Cargando…

Intracortical Bone Remodeling Variation Shows Strong Genetic Effects

Intracortical microstructure influences crack propagation and arrest within bone cortex. Genetic variation in intracortical remodeling may contribute to mechanical integrity and, therefore, fracture risk. Our aim was to determine the degree to which normal population-level variation in intracortical...

Descripción completa

Detalles Bibliográficos
Autores principales: Havill, L. M., Allen, M. R., Harris, J. A. K., Levine, S. M., Coan, H. B., Mahaney, M. C., Nicolella, D. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824973/
https://www.ncbi.nlm.nih.gov/pubmed/23979114
http://dx.doi.org/10.1007/s00223-013-9775-x
_version_ 1782290753539538944
author Havill, L. M.
Allen, M. R.
Harris, J. A. K.
Levine, S. M.
Coan, H. B.
Mahaney, M. C.
Nicolella, D. P.
author_facet Havill, L. M.
Allen, M. R.
Harris, J. A. K.
Levine, S. M.
Coan, H. B.
Mahaney, M. C.
Nicolella, D. P.
author_sort Havill, L. M.
collection PubMed
description Intracortical microstructure influences crack propagation and arrest within bone cortex. Genetic variation in intracortical remodeling may contribute to mechanical integrity and, therefore, fracture risk. Our aim was to determine the degree to which normal population-level variation in intracortical microstructure is due to genetic variation. We examined right femurs from 101 baboons (74 females, 27 males; aged 7–33 years) from a single, extended pedigree to determine osteon number, osteon area (On.Ar), haversian canal area, osteon population density, percent osteonal bone (%On.B), wall thickness (W.Th), and cortical porosity (Ct.Po). Through evaluation of the covariance in intracortical properties between pairs of relatives, we quantified the contribution of additive genetic effects (heritability [h (2)]) to variation in these traits using a variance decomposition approach. Significant age and sex effects account for 9 % (Ct.Po) to 21 % (W.Th) of intracortical microstructural variation. After accounting for age and sex, significant genetic effects are evident for On.Ar (h (2) = 0.79, p = 0.002), %On.B (h (2) = 0.82, p = 0.003), and W.Th (h (2) = 0.61, p = 0.013), indicating that 61–82 % of the residual variation (after accounting for age and sex effects) is due to additive genetic effects. This corresponds to 48–75 % of the total phenotypic variance. Our results demonstrate that normal, population-level variation in cortical microstructure is significantly influenced by genes. As a critical mediator of crack behavior in bone cortex, intracortical microstructural variation provides another mechanism through which genetic variation may affect fracture risk.
format Online
Article
Text
id pubmed-3824973
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-38249732013-11-21 Intracortical Bone Remodeling Variation Shows Strong Genetic Effects Havill, L. M. Allen, M. R. Harris, J. A. K. Levine, S. M. Coan, H. B. Mahaney, M. C. Nicolella, D. P. Calcif Tissue Int Original Research Intracortical microstructure influences crack propagation and arrest within bone cortex. Genetic variation in intracortical remodeling may contribute to mechanical integrity and, therefore, fracture risk. Our aim was to determine the degree to which normal population-level variation in intracortical microstructure is due to genetic variation. We examined right femurs from 101 baboons (74 females, 27 males; aged 7–33 years) from a single, extended pedigree to determine osteon number, osteon area (On.Ar), haversian canal area, osteon population density, percent osteonal bone (%On.B), wall thickness (W.Th), and cortical porosity (Ct.Po). Through evaluation of the covariance in intracortical properties between pairs of relatives, we quantified the contribution of additive genetic effects (heritability [h (2)]) to variation in these traits using a variance decomposition approach. Significant age and sex effects account for 9 % (Ct.Po) to 21 % (W.Th) of intracortical microstructural variation. After accounting for age and sex, significant genetic effects are evident for On.Ar (h (2) = 0.79, p = 0.002), %On.B (h (2) = 0.82, p = 0.003), and W.Th (h (2) = 0.61, p = 0.013), indicating that 61–82 % of the residual variation (after accounting for age and sex effects) is due to additive genetic effects. This corresponds to 48–75 % of the total phenotypic variance. Our results demonstrate that normal, population-level variation in cortical microstructure is significantly influenced by genes. As a critical mediator of crack behavior in bone cortex, intracortical microstructural variation provides another mechanism through which genetic variation may affect fracture risk. Springer US 2013-08-27 2013 /pmc/articles/PMC3824973/ /pubmed/23979114 http://dx.doi.org/10.1007/s00223-013-9775-x Text en © The Author(s) 2013 https://creativecommons.org/licenses/by/2.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
spellingShingle Original Research
Havill, L. M.
Allen, M. R.
Harris, J. A. K.
Levine, S. M.
Coan, H. B.
Mahaney, M. C.
Nicolella, D. P.
Intracortical Bone Remodeling Variation Shows Strong Genetic Effects
title Intracortical Bone Remodeling Variation Shows Strong Genetic Effects
title_full Intracortical Bone Remodeling Variation Shows Strong Genetic Effects
title_fullStr Intracortical Bone Remodeling Variation Shows Strong Genetic Effects
title_full_unstemmed Intracortical Bone Remodeling Variation Shows Strong Genetic Effects
title_short Intracortical Bone Remodeling Variation Shows Strong Genetic Effects
title_sort intracortical bone remodeling variation shows strong genetic effects
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824973/
https://www.ncbi.nlm.nih.gov/pubmed/23979114
http://dx.doi.org/10.1007/s00223-013-9775-x
work_keys_str_mv AT havilllm intracorticalboneremodelingvariationshowsstronggeneticeffects
AT allenmr intracorticalboneremodelingvariationshowsstronggeneticeffects
AT harrisjak intracorticalboneremodelingvariationshowsstronggeneticeffects
AT levinesm intracorticalboneremodelingvariationshowsstronggeneticeffects
AT coanhb intracorticalboneremodelingvariationshowsstronggeneticeffects
AT mahaneymc intracorticalboneremodelingvariationshowsstronggeneticeffects
AT nicolelladp intracorticalboneremodelingvariationshowsstronggeneticeffects