Cargando…
Accuracy and response-time distributions for decision-making: linear perfect integrators versus nonlinear attractor-based neural circuits
Animals choose actions based on imperfect, ambiguous data. “Noise” inherent in neural processing adds further variability to this already-noisy input signal. Mathematical analysis has suggested that the optimal apparatus (in terms of the speed/accuracy trade-off) for reaching decisions about such no...
Autores principales: | Miller, Paul, Katz, Donald B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825033/ https://www.ncbi.nlm.nih.gov/pubmed/23608921 http://dx.doi.org/10.1007/s10827-013-0452-x |
Ejemplares similares
-
Dynamical systems, attractors, and neural circuits
por: Miller, Paul
Publicado: (2016) -
Robust parallel decision-making in neural circuits with nonlinear inhibition
por: Kriener, Birgit, et al.
Publicado: (2020) -
Attractor-state itinerancy in neural circuits with synaptic depression
por: Chen, Bolun, et al.
Publicado: (2020) -
A neural algorithm for Drosophila linear and nonlinear decision-making
por: Zhao, Feifei, et al.
Publicado: (2020) -
Changes of Mind in an Attractor Network of Decision-Making
por: Albantakis, Larissa, et al.
Publicado: (2011)