Cargando…

Ethacrynic Acid Inhibits Sphingosylphosphorylcholine-Induced Keratin 8 Phosphorylation and Reorganization via Transglutaminase-2 Inhibition

Sphingosylphosphorylcholine (SPC) is significantly increased in the malicious ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments in PANC-1 cells. The reorganization contributes to the viscoelasticity of metastatic cancer cells resulting in increased migratio...

Descripción completa

Detalles Bibliográficos
Autores principales: Byun, Hyun Jung, Kang, Kyung Jin, Park, Mi Kyung, Lee, Hye Ja, Kang, June Hee, Lee, Eun Ji, Kim, You Ri, Kim, Hyun Ji, Kim, Young Woo, Jung, Kyung Chae, Kim, Soo Youl, Lee, Chang Hoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Applied Pharmacology 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825196/
https://www.ncbi.nlm.nih.gov/pubmed/24244820
http://dx.doi.org/10.4062/biomolther.2013.066
Descripción
Sumario:Sphingosylphosphorylcholine (SPC) is significantly increased in the malicious ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments in PANC-1 cells. The reorganization contributes to the viscoelasticity of metastatic cancer cells resulting in increased migration. Recently, we reported that transglutaminase-2 (Tgase-2) is involved in SPC-induced K8 phosphorylation and reorganization. However, effects of Tgase-2 inhibitors on SPC-induced K8 phosphorylation and reorganization were not clearly studied. We found that ethacrynic acid (ECA) concentration-dependently inhibited Tgase-2. Therefore, we examined the effects of ECA on SPC-induced K8 phosphorylation and reorganization. ECA concentration-dependently suppressed the SPC-induced phosphorylation and perinuclear reorganization of K8. ECA also suppressed the SPC-induced migration and invasion. SPC induced JNK activation through Tgase-2 expression and ECA suppressed the activation and expression of JNK in PANC-1 cells. These results suggested that ECA might be useful to control Tgase-2 dependent metastasis of cancer cells such as pancreatic cancer and lung cancers.