Cargando…
Hierarchical vector auto-regressive models and their applications to multi-subject effective connectivity
Vector auto-regressive (VAR) models typically form the basis for constructing directed graphical models for investigating connectivity in a brain network with brain regions of interest (ROIs) as nodes. There are limitations in the standard VAR models. The number of parameters in the VAR model increa...
Autores principales: | Gorrostieta, Cristina, Fiecas, Mark, Ombao, Hernando, Burke, Erin, Cramer, Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825259/ https://www.ncbi.nlm.nih.gov/pubmed/24282401 http://dx.doi.org/10.3389/fncom.2013.00159 |
Ejemplares similares
-
Vector Auto-Regressive Deep Neural Network: A Data-Driven Deep Learning-Based Directed Functional Connectivity Estimation Toolbox
por: Okuno, Takuto, et al.
Publicado: (2021) -
An exploratory data analysis of electroencephalograms using the functional boxplots approach
por: Ngo, Duy, et al.
Publicado: (2015) -
Ridge Penalization in High-Dimensional Testing With Applications to Imaging Genetics
por: Gauran, Iris Ivy, et al.
Publicado: (2022) -
Multi-Chaotic Analysis of Inter-Beat (R-R) Intervals in Cardiac Signals for Discrimination between Normal and Pathological Classes
por: Gorshkov, Oleg, et al.
Publicado: (2021) -
Recurrent Connections Might Be Important for Hierarchical Categorization
por: Matsumoto, Narihisa, et al.
Publicado: (2022)