Cargando…
Reduction of complement factor H binding to CLL cells improves the induction of rituximab-mediated complement-dependent cytotoxicity
A main effector mechanism of rituximab (RTX) is the induction of complement-dependent cytotoxicity (CDC). However, this effector function is limited, because CLL cells are protected from complement-induced damage by regulators of complement activation (RCAs). A prominent RCA in fluid phase is factor...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826035/ https://www.ncbi.nlm.nih.gov/pubmed/23760402 http://dx.doi.org/10.1038/leu.2013.169 |
Sumario: | A main effector mechanism of rituximab (RTX) is the induction of complement-dependent cytotoxicity (CDC). However, this effector function is limited, because CLL cells are protected from complement-induced damage by regulators of complement activation (RCAs). A prominent RCA in fluid phase is factor H (fH), which has not been investigated in this context yet. Here, we show that fH binds to CLL cells and that human recombinant fH-derived short-consensus repeat 18–20 (hSCR18–20) interferes with this binding. In complement-based lysis assays, CLL cells from therapy-naive patients were differently susceptible to RTX-induced CDC and were defined as CDC responder or CDC non-responder, respectively. In CDC responders, but notably also in non-responders, hSCR18–20 significantly boosted RTX-induced CDC. Killing of the cells was specific for CD20(+) cells, whereas CD20(−) cells were poorly affected. CDC resistance was independent of expression of the membrane-anchored RCAs CD55 and CD59, although blocking of these RCAs further boosted CDC. Thus, inhibition of fH binding by hSCR18–20 sensitizes CLL cells to CDC and may provide a novel strategy for improving RTX-containing immunochemotherapy of CLL patients. |
---|