Cargando…

Integration of TiO(2) into the diatom Thalassiosira weissflogii during frustule synthesis

Nature has inspired the design of complex hierarchical structures in the field of material science. Diatoms, unicellular algae with a hallmark intricate siliceous cell wall, have provided such a stimulus. Altering the chemistry of the diatom frustule has been explored to expand on the potential appl...

Descripción completa

Detalles Bibliográficos
Autores principales: Lang, Yvonne, Monte, Francisco del, Rodriguez, Brian J., Dockery, Peter, Finn, David P., Pandit, Abhay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826116/
https://www.ncbi.nlm.nih.gov/pubmed/24220344
http://dx.doi.org/10.1038/srep03205
Descripción
Sumario:Nature has inspired the design of complex hierarchical structures in the field of material science. Diatoms, unicellular algae with a hallmark intricate siliceous cell wall, have provided such a stimulus. Altering the chemistry of the diatom frustule has been explored to expand on the potential application of diatoms. The ability to modify the diatom in vivo opens the possibility to tailor the diatom to the end application. Herein, we report the chemical modification of the living diatom T. weissflogii using a titania precursor, titanium (IV) bis-(ammonium lactato)-dihydroxide (TiBALDH). Incorporation of Ti into the diatom is achieved via repeated treatment of cultures with non-toxic concentrations of TiBALDH. The characteristic architectural features of the diatom are unaltered following chemical modification. Transformation of the living diatom provides opportunity to confer novel structural, chemical or functional properties upon the diatom. We report on a photocatalytic ability imparted upon the TiBALDH-modified diatom.