Cargando…
On the Set of the Numbers of Conjugates of Noncyclic Proper Subgroups of Finite Groups
Let G be a finite group and 𝒩𝒞(G) the set of the numbers of conjugates of noncyclic proper subgroups of G. We prove that (1) if |𝒩𝒞(G)| ≤ 2, then G is solvable, and (2) G is a nonsolvable group with |𝒩𝒞(G)| = 3 if and only if G≅PSL(2,5) or PSL(2,13) or SL(2,5) or SL(2,13).
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826299/ https://www.ncbi.nlm.nih.gov/pubmed/24292508 http://dx.doi.org/10.1155/2013/430870 |
Sumario: | Let G be a finite group and 𝒩𝒞(G) the set of the numbers of conjugates of noncyclic proper subgroups of G. We prove that (1) if |𝒩𝒞(G)| ≤ 2, then G is solvable, and (2) G is a nonsolvable group with |𝒩𝒞(G)| = 3 if and only if G≅PSL(2,5) or PSL(2,13) or SL(2,5) or SL(2,13). |
---|