Cargando…

On the Set of the Numbers of Conjugates of Noncyclic Proper Subgroups of Finite Groups

Let G be a finite group and 𝒩𝒞(G) the set of the numbers of conjugates of noncyclic proper subgroups of G. We prove that (1) if |𝒩𝒞(G)| ≤ 2, then G is solvable, and (2) G is a nonsolvable group with |𝒩𝒞(G)| = 3 if and only if G≅PSL(2,5) or PSL(2,13) or SL(2,5) or SL(2,13).

Detalles Bibliográficos
Autores principales: Shi, Jiangtao, Zhang, Cui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826299/
https://www.ncbi.nlm.nih.gov/pubmed/24292508
http://dx.doi.org/10.1155/2013/430870
Descripción
Sumario:Let G be a finite group and 𝒩𝒞(G) the set of the numbers of conjugates of noncyclic proper subgroups of G. We prove that (1) if |𝒩𝒞(G)| ≤ 2, then G is solvable, and (2) G is a nonsolvable group with |𝒩𝒞(G)| = 3 if and only if G≅PSL(2,5) or PSL(2,13) or SL(2,5) or SL(2,13).