Cargando…
On the Set of the Numbers of Conjugates of Noncyclic Proper Subgroups of Finite Groups
Let G be a finite group and 𝒩𝒞(G) the set of the numbers of conjugates of noncyclic proper subgroups of G. We prove that (1) if |𝒩𝒞(G)| ≤ 2, then G is solvable, and (2) G is a nonsolvable group with |𝒩𝒞(G)| = 3 if and only if G≅PSL(2,5) or PSL(2,13) or SL(2,5) or SL(2,13).
Autores principales: | Shi, Jiangtao, Zhang, Cui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826299/ https://www.ncbi.nlm.nih.gov/pubmed/24292508 http://dx.doi.org/10.1155/2013/430870 |
Ejemplares similares
-
An experimental test of the geodesic rule proposition for the noncyclic geometric phase
por: Zhou, Zhifan, et al.
Publicado: (2020) -
Differential response of cycling and noncycling cells to inducers of DNA synthesis and mitosis
por: Rao, PN, et al.
Publicado: (1981) -
Engineering the transmission efficiency of the noncyclic glyoxylate pathway for fumarate production in Escherichia coli
por: Chen, Xiulai, et al.
Publicado: (2020) -
Complementation of normal subgroups: in finite groups
por: Kirtland, Joseph
Publicado: (2017) -
The subgroup structure of the finite classical groups
por: Kleidman, Peter B, et al.
Publicado: (1990)