Cargando…
A novel strategy for classifying the output from an in silico vaccine discovery pipeline for eukaryotic pathogens using machine learning algorithms
BACKGROUND: An in silico vaccine discovery pipeline for eukaryotic pathogens typically consists of several computational tools to predict protein characteristics. The aim of the in silico approach to discovering subunit vaccines is to use predicted characteristics to identify proteins which are wort...
Autores principales: | Goodswen, Stephen J, Kennedy, Paul J, Ellis, John T |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826511/ https://www.ncbi.nlm.nih.gov/pubmed/24180526 http://dx.doi.org/10.1186/1471-2105-14-315 |
Ejemplares similares
-
Vacceed: a high-throughput in silico vaccine candidate discovery pipeline for eukaryotic pathogens based on reverse vaccinology
por: Goodswen, Stephen J., et al.
Publicado: (2014) -
Enhancing In Silico Protein-Based Vaccine Discovery for Eukaryotic Pathogens Using Predicted Peptide-MHC Binding and Peptide Conservation Scores
por: Goodswen, Stephen J., et al.
Publicado: (2014) -
Evaluating High-Throughput Ab Initio Gene Finders to Discover Proteins Encoded in Eukaryotic Pathogen Genomes Missed by Laboratory Techniques
por: Goodswen, Stephen J., et al.
Publicado: (2012) -
A state-of-the-art methodology for high-throughput in silico vaccine discovery against protozoan parasites and exemplified with discovered candidates for Toxoplasma gondii
por: Goodswen, Stephen J., et al.
Publicado: (2023) -
Comparison of Two Output-Coding Strategies for Multi-Class Tumor Classification Using Gene Expression Data and Latent Variable Model as Binary Classifier
por: Joseph, Sandeep J., et al.
Publicado: (2010)