Cargando…
EEG theta and Mu oscillations during perception of human and robot actions
The perception of others’ actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move dif...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826547/ https://www.ncbi.nlm.nih.gov/pubmed/24348375 http://dx.doi.org/10.3389/fnbot.2013.00019 |
_version_ | 1782290923478056960 |
---|---|
author | Urgen, Burcu A. Plank, Markus Ishiguro, Hiroshi Poizner, Howard Saygin, Ayse P. |
author_facet | Urgen, Burcu A. Plank, Markus Ishiguro, Hiroshi Poizner, Howard Saygin, Ayse P. |
author_sort | Urgen, Burcu A. |
collection | PubMed |
description | The perception of others’ actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8–13 Hz) and frontal theta (4–8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other. |
format | Online Article Text |
id | pubmed-3826547 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-38265472013-12-13 EEG theta and Mu oscillations during perception of human and robot actions Urgen, Burcu A. Plank, Markus Ishiguro, Hiroshi Poizner, Howard Saygin, Ayse P. Front Neurorobot Neuroscience The perception of others’ actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8–13 Hz) and frontal theta (4–8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other. Frontiers Media S.A. 2013-11-13 /pmc/articles/PMC3826547/ /pubmed/24348375 http://dx.doi.org/10.3389/fnbot.2013.00019 Text en Copyright © 2013 Urgen, Plank, Ishiguro, Poizner and Saygin. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Urgen, Burcu A. Plank, Markus Ishiguro, Hiroshi Poizner, Howard Saygin, Ayse P. EEG theta and Mu oscillations during perception of human and robot actions |
title | EEG theta and Mu oscillations during perception of human and robot actions |
title_full | EEG theta and Mu oscillations during perception of human and robot actions |
title_fullStr | EEG theta and Mu oscillations during perception of human and robot actions |
title_full_unstemmed | EEG theta and Mu oscillations during perception of human and robot actions |
title_short | EEG theta and Mu oscillations during perception of human and robot actions |
title_sort | eeg theta and mu oscillations during perception of human and robot actions |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826547/ https://www.ncbi.nlm.nih.gov/pubmed/24348375 http://dx.doi.org/10.3389/fnbot.2013.00019 |
work_keys_str_mv | AT urgenburcua eegthetaandmuoscillationsduringperceptionofhumanandrobotactions AT plankmarkus eegthetaandmuoscillationsduringperceptionofhumanandrobotactions AT ishigurohiroshi eegthetaandmuoscillationsduringperceptionofhumanandrobotactions AT poiznerhoward eegthetaandmuoscillationsduringperceptionofhumanandrobotactions AT sayginaysep eegthetaandmuoscillationsduringperceptionofhumanandrobotactions |