Cargando…

Rapid regional perturbations to the recent global geomagnetic decay revealed by a new Hawaiian record

The dominant dipolar component of the Earth’s magnetic field has been steadily weakening for at least the last 170 years. Prior to these direct measurements, archaeomagnetic records show short periods of significantly elevated geomagnetic intensity. These striking phenomena are not captured by curre...

Descripción completa

Detalles Bibliográficos
Autores principales: de Groot, L. V., Biggin, A. J., Dekkers, M. J., Langereis, C. G., Herrero-Bervera, E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826623/
https://www.ncbi.nlm.nih.gov/pubmed/24177390
http://dx.doi.org/10.1038/ncomms3727
Descripción
Sumario:The dominant dipolar component of the Earth’s magnetic field has been steadily weakening for at least the last 170 years. Prior to these direct measurements, archaeomagnetic records show short periods of significantly elevated geomagnetic intensity. These striking phenomena are not captured by current field models and their relationship to the recent dipole decay is highly unclear. Here we apply a novel multi-method archaeomagnetic approach to produce a new high-quality record of geomagnetic intensity variations for Hawaii, a crucial locality in the central Pacific. It reveals a short period of high intensity occurring ~1,000 years ago, qualitatively similar to behaviour observed 200 years earlier in Europe and 500 years later in Mesoamerica. We combine these records with one from Japan to produce a coherent picture that includes the dipole decaying steadily over the last millennium. Strong, regional, short-term intensity perturbations are superimposed on this global trend; their asynchronicity necessitates a highly non-dipolar nature.