Cargando…

Soil Bacterial Communities Respond to Climate Changes in a Temperate Steppe

Climate warming and shifting precipitation regimes are affecting biodiversity and ecosystem functioning. Most studies have focused on the influence of warming and altered precipitation on macro-organisms, whereas the responses of soil microbial communities have been neglected. We studied the changes...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ximei, Zhang, Guangming, Chen, Quansheng, Han, Xingguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826739/
https://www.ncbi.nlm.nih.gov/pubmed/24250803
http://dx.doi.org/10.1371/journal.pone.0078616
Descripción
Sumario:Climate warming and shifting precipitation regimes are affecting biodiversity and ecosystem functioning. Most studies have focused on the influence of warming and altered precipitation on macro-organisms, whereas the responses of soil microbial communities have been neglected. We studied the changes in the abundance, richness, and composition of the entire bacterial kingdom and 16 dominant bacterial phyla/classes in response to increased precipitation, warming, and their combination, by conducting a 5-year experiment in a steppe ecosystem in Inner Mongolia, China. Watering had a greater effect than warming on almost all the bacterial groups as indicated by changes in all the three attributes (abundance, richness, and composition). The 16 phyla/classes responded differentially to the experimental treatments, with Acidobacteria and Gamma-proteobacteria being the most sensitive. Stepwise regression analyses further revealed that climate changes altered the abundance and richness of bacterial groups primarily through direct routes (e.g., increasing soil water content), and changed the community composition through both direct and indirect routes (e.g., reducing soil total nitrogen content and increasing soil pH). The diverse responses of various bacterial groups could imply some potential shift in their ecosystem functions under climate changes; meanwhile, the indirect routes that are important in altering bacterial composition suggest that specific strategies (e.g., adding NH(4)NO(3) to maintain soil nitrogen content and pH) could be adopted to maintain soil microbial composition under climate changes.