Cargando…

Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies

Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover...

Descripción completa

Detalles Bibliográficos
Autores principales: Eisenberger, Tobias, Neuhaus, Christine, Khan, Arif O., Decker, Christian, Preising, Markus N., Friedburg, Christoph, Bieg, Anika, Gliem, Martin, Issa, Peter Charbel, Holz, Frank G., Baig, Shahid M., Hellenbroich, Yorck, Galvez, Alberto, Platzer, Konrad, Wollnik, Bernd, Laddach, Nadja, Ghaffari, Saeed Reza, Rafati, Maryam, Botzenhart, Elke, Tinschert, Sigrid, Börger, Doris, Bohring, Axel, Schreml, Julia, Körtge-Jung, Stefani, Schell-Apacik, Chayim, Bakur, Khadijah, Al-Aama, Jumana Y., Neuhann, Teresa, Herkenrath, Peter, Nürnberg, Gudrun, Nürnberg, Peter, Davis, John S., Gal, Andreas, Bergmann, Carsten, Lorenz, Birgit, Bolz, Hanno J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827063/
https://www.ncbi.nlm.nih.gov/pubmed/24265693
http://dx.doi.org/10.1371/journal.pone.0078496
_version_ 1782290998894788608
author Eisenberger, Tobias
Neuhaus, Christine
Khan, Arif O.
Decker, Christian
Preising, Markus N.
Friedburg, Christoph
Bieg, Anika
Gliem, Martin
Issa, Peter Charbel
Holz, Frank G.
Baig, Shahid M.
Hellenbroich, Yorck
Galvez, Alberto
Platzer, Konrad
Wollnik, Bernd
Laddach, Nadja
Ghaffari, Saeed Reza
Rafati, Maryam
Botzenhart, Elke
Tinschert, Sigrid
Börger, Doris
Bohring, Axel
Schreml, Julia
Körtge-Jung, Stefani
Schell-Apacik, Chayim
Bakur, Khadijah
Al-Aama, Jumana Y.
Neuhann, Teresa
Herkenrath, Peter
Nürnberg, Gudrun
Nürnberg, Peter
Davis, John S.
Gal, Andreas
Bergmann, Carsten
Lorenz, Birgit
Bolz, Hanno J.
author_facet Eisenberger, Tobias
Neuhaus, Christine
Khan, Arif O.
Decker, Christian
Preising, Markus N.
Friedburg, Christoph
Bieg, Anika
Gliem, Martin
Issa, Peter Charbel
Holz, Frank G.
Baig, Shahid M.
Hellenbroich, Yorck
Galvez, Alberto
Platzer, Konrad
Wollnik, Bernd
Laddach, Nadja
Ghaffari, Saeed Reza
Rafati, Maryam
Botzenhart, Elke
Tinschert, Sigrid
Börger, Doris
Bohring, Axel
Schreml, Julia
Körtge-Jung, Stefani
Schell-Apacik, Chayim
Bakur, Khadijah
Al-Aama, Jumana Y.
Neuhann, Teresa
Herkenrath, Peter
Nürnberg, Gudrun
Nürnberg, Peter
Davis, John S.
Gal, Andreas
Bergmann, Carsten
Lorenz, Birgit
Bolz, Hanno J.
author_sort Eisenberger, Tobias
collection PubMed
description Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading.
format Online
Article
Text
id pubmed-3827063
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-38270632013-11-21 Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies Eisenberger, Tobias Neuhaus, Christine Khan, Arif O. Decker, Christian Preising, Markus N. Friedburg, Christoph Bieg, Anika Gliem, Martin Issa, Peter Charbel Holz, Frank G. Baig, Shahid M. Hellenbroich, Yorck Galvez, Alberto Platzer, Konrad Wollnik, Bernd Laddach, Nadja Ghaffari, Saeed Reza Rafati, Maryam Botzenhart, Elke Tinschert, Sigrid Börger, Doris Bohring, Axel Schreml, Julia Körtge-Jung, Stefani Schell-Apacik, Chayim Bakur, Khadijah Al-Aama, Jumana Y. Neuhann, Teresa Herkenrath, Peter Nürnberg, Gudrun Nürnberg, Peter Davis, John S. Gal, Andreas Bergmann, Carsten Lorenz, Birgit Bolz, Hanno J. PLoS One Research Article Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading. Public Library of Science 2013-11-12 /pmc/articles/PMC3827063/ /pubmed/24265693 http://dx.doi.org/10.1371/journal.pone.0078496 Text en © 2013 Eisenberger et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Eisenberger, Tobias
Neuhaus, Christine
Khan, Arif O.
Decker, Christian
Preising, Markus N.
Friedburg, Christoph
Bieg, Anika
Gliem, Martin
Issa, Peter Charbel
Holz, Frank G.
Baig, Shahid M.
Hellenbroich, Yorck
Galvez, Alberto
Platzer, Konrad
Wollnik, Bernd
Laddach, Nadja
Ghaffari, Saeed Reza
Rafati, Maryam
Botzenhart, Elke
Tinschert, Sigrid
Börger, Doris
Bohring, Axel
Schreml, Julia
Körtge-Jung, Stefani
Schell-Apacik, Chayim
Bakur, Khadijah
Al-Aama, Jumana Y.
Neuhann, Teresa
Herkenrath, Peter
Nürnberg, Gudrun
Nürnberg, Peter
Davis, John S.
Gal, Andreas
Bergmann, Carsten
Lorenz, Birgit
Bolz, Hanno J.
Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies
title Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies
title_full Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies
title_fullStr Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies
title_full_unstemmed Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies
title_short Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies
title_sort increasing the yield in targeted next-generation sequencing by implicating cnv analysis, non-coding exons and the overall variant load: the example of retinal dystrophies
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827063/
https://www.ncbi.nlm.nih.gov/pubmed/24265693
http://dx.doi.org/10.1371/journal.pone.0078496
work_keys_str_mv AT eisenbergertobias increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT neuhauschristine increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT khanarifo increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT deckerchristian increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT preisingmarkusn increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT friedburgchristoph increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT bieganika increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT gliemmartin increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT issapetercharbel increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT holzfrankg increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT baigshahidm increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT hellenbroichyorck increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT galvezalberto increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT platzerkonrad increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT wollnikbernd increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT laddachnadja increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT ghaffarisaeedreza increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT rafatimaryam increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT botzenhartelke increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT tinschertsigrid increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT borgerdoris increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT bohringaxel increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT schremljulia increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT kortgejungstefani increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT schellapacikchayim increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT bakurkhadijah increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT alaamajumanay increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT neuhannteresa increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT herkenrathpeter increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT nurnberggudrun increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT nurnbergpeter increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT davisjohns increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT galandreas increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT bergmanncarsten increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT lorenzbirgit increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies
AT bolzhannoj increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies