Cargando…
Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827063/ https://www.ncbi.nlm.nih.gov/pubmed/24265693 http://dx.doi.org/10.1371/journal.pone.0078496 |
_version_ | 1782290998894788608 |
---|---|
author | Eisenberger, Tobias Neuhaus, Christine Khan, Arif O. Decker, Christian Preising, Markus N. Friedburg, Christoph Bieg, Anika Gliem, Martin Issa, Peter Charbel Holz, Frank G. Baig, Shahid M. Hellenbroich, Yorck Galvez, Alberto Platzer, Konrad Wollnik, Bernd Laddach, Nadja Ghaffari, Saeed Reza Rafati, Maryam Botzenhart, Elke Tinschert, Sigrid Börger, Doris Bohring, Axel Schreml, Julia Körtge-Jung, Stefani Schell-Apacik, Chayim Bakur, Khadijah Al-Aama, Jumana Y. Neuhann, Teresa Herkenrath, Peter Nürnberg, Gudrun Nürnberg, Peter Davis, John S. Gal, Andreas Bergmann, Carsten Lorenz, Birgit Bolz, Hanno J. |
author_facet | Eisenberger, Tobias Neuhaus, Christine Khan, Arif O. Decker, Christian Preising, Markus N. Friedburg, Christoph Bieg, Anika Gliem, Martin Issa, Peter Charbel Holz, Frank G. Baig, Shahid M. Hellenbroich, Yorck Galvez, Alberto Platzer, Konrad Wollnik, Bernd Laddach, Nadja Ghaffari, Saeed Reza Rafati, Maryam Botzenhart, Elke Tinschert, Sigrid Börger, Doris Bohring, Axel Schreml, Julia Körtge-Jung, Stefani Schell-Apacik, Chayim Bakur, Khadijah Al-Aama, Jumana Y. Neuhann, Teresa Herkenrath, Peter Nürnberg, Gudrun Nürnberg, Peter Davis, John S. Gal, Andreas Bergmann, Carsten Lorenz, Birgit Bolz, Hanno J. |
author_sort | Eisenberger, Tobias |
collection | PubMed |
description | Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading. |
format | Online Article Text |
id | pubmed-3827063 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38270632013-11-21 Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies Eisenberger, Tobias Neuhaus, Christine Khan, Arif O. Decker, Christian Preising, Markus N. Friedburg, Christoph Bieg, Anika Gliem, Martin Issa, Peter Charbel Holz, Frank G. Baig, Shahid M. Hellenbroich, Yorck Galvez, Alberto Platzer, Konrad Wollnik, Bernd Laddach, Nadja Ghaffari, Saeed Reza Rafati, Maryam Botzenhart, Elke Tinschert, Sigrid Börger, Doris Bohring, Axel Schreml, Julia Körtge-Jung, Stefani Schell-Apacik, Chayim Bakur, Khadijah Al-Aama, Jumana Y. Neuhann, Teresa Herkenrath, Peter Nürnberg, Gudrun Nürnberg, Peter Davis, John S. Gal, Andreas Bergmann, Carsten Lorenz, Birgit Bolz, Hanno J. PLoS One Research Article Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading. Public Library of Science 2013-11-12 /pmc/articles/PMC3827063/ /pubmed/24265693 http://dx.doi.org/10.1371/journal.pone.0078496 Text en © 2013 Eisenberger et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Eisenberger, Tobias Neuhaus, Christine Khan, Arif O. Decker, Christian Preising, Markus N. Friedburg, Christoph Bieg, Anika Gliem, Martin Issa, Peter Charbel Holz, Frank G. Baig, Shahid M. Hellenbroich, Yorck Galvez, Alberto Platzer, Konrad Wollnik, Bernd Laddach, Nadja Ghaffari, Saeed Reza Rafati, Maryam Botzenhart, Elke Tinschert, Sigrid Börger, Doris Bohring, Axel Schreml, Julia Körtge-Jung, Stefani Schell-Apacik, Chayim Bakur, Khadijah Al-Aama, Jumana Y. Neuhann, Teresa Herkenrath, Peter Nürnberg, Gudrun Nürnberg, Peter Davis, John S. Gal, Andreas Bergmann, Carsten Lorenz, Birgit Bolz, Hanno J. Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies |
title | Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies |
title_full | Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies |
title_fullStr | Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies |
title_full_unstemmed | Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies |
title_short | Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies |
title_sort | increasing the yield in targeted next-generation sequencing by implicating cnv analysis, non-coding exons and the overall variant load: the example of retinal dystrophies |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827063/ https://www.ncbi.nlm.nih.gov/pubmed/24265693 http://dx.doi.org/10.1371/journal.pone.0078496 |
work_keys_str_mv | AT eisenbergertobias increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT neuhauschristine increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT khanarifo increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT deckerchristian increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT preisingmarkusn increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT friedburgchristoph increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT bieganika increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT gliemmartin increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT issapetercharbel increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT holzfrankg increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT baigshahidm increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT hellenbroichyorck increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT galvezalberto increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT platzerkonrad increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT wollnikbernd increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT laddachnadja increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT ghaffarisaeedreza increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT rafatimaryam increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT botzenhartelke increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT tinschertsigrid increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT borgerdoris increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT bohringaxel increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT schremljulia increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT kortgejungstefani increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT schellapacikchayim increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT bakurkhadijah increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT alaamajumanay increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT neuhannteresa increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT herkenrathpeter increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT nurnberggudrun increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT nurnbergpeter increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT davisjohns increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT galandreas increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT bergmanncarsten increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT lorenzbirgit increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies AT bolzhannoj increasingtheyieldintargetednextgenerationsequencingbyimplicatingcnvanalysisnoncodingexonsandtheoverallvariantloadtheexampleofretinaldystrophies |