Cargando…

FGF2 Delays Tectal Neurogenesis, Increases Tectal Cell Numbers, and Alters Tectal Lamination in Embryonic Chicks

Intraventricular injections of the fibroblast growth factor 2 (FGF2) are known to increase the size of the optic tectum in embryonic chicks. Here we show that this increase in tectum size is due to a delay in tectal neurogenesis, which by definition extends the proliferation of tectal progenitors. S...

Descripción completa

Detalles Bibliográficos
Autores principales: McGowan, Luke D., Alaama, Roula A., Striedter, Georg F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827156/
https://www.ncbi.nlm.nih.gov/pubmed/24265789
http://dx.doi.org/10.1371/journal.pone.0079949
Descripción
Sumario:Intraventricular injections of the fibroblast growth factor 2 (FGF2) are known to increase the size of the optic tectum in embryonic chicks. Here we show that this increase in tectum size is due to a delay in tectal neurogenesis, which by definition extends the proliferation of tectal progenitors. Specifically, we use cumulative labeling with the thymidine analog EdU to demonstrate that FGF2 treatment on embryonic day 4 (ED4) reduces the proportion and absolute number of unlabeled cells in the rostroventral tectum when EdU infusions are begun on ED5, as one would expect if FGF2 retards tectal neurogenesis. We also examined FGF2′s effect on neurogenesis in the caudodorsal tectum, which is born 2-3 days after the rostroventral tectum, by combining FGF2 treatment on ED4 with EDU infusions beginning on ED8. Again, FGF2 treatment reduced the proportion and number of EdU-negative (i.e., unlabeled) cells, consistent with a delay in neurogenesis. Collectively, these data indicate FGF2 in embryonic chicks delays neurogenesis throughout much of the tectum and continues to do so for several days after the FGF2 injection. One effect of this delay in neurogenesis is that tectal cell numbers more than double. In addition, tectal laminae that are born early in development become abnormally thin and cell-sparse after FGF2 treatment, whereas late-born layers remain unaffected. Combined with the results of prior work, these data indicate that FGF2 delays tectal neurogenesis and, thereby, triggers a cascade of changes in tectum size and morphology.