Cargando…
Chemical Profiles of Two Pheromone Glands Are Differentially Regulated by Distinct Mating Factors in Honey Bee Queens (Apis mellifera L.)
Pheromones mediate social interactions among individuals in a wide variety of species, from yeast to mammals. In social insects such as honey bees, pheromone communication systems can be extraordinarily complex and serve to coordinate behaviors among many individuals. One of the primary mediators of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827242/ https://www.ncbi.nlm.nih.gov/pubmed/24236028 http://dx.doi.org/10.1371/journal.pone.0078637 |
_version_ | 1782291036031156224 |
---|---|
author | Niño, Elina L. Malka, Osnat Hefetz, Abraham Tarpy, David R. Grozinger, Christina M. |
author_facet | Niño, Elina L. Malka, Osnat Hefetz, Abraham Tarpy, David R. Grozinger, Christina M. |
author_sort | Niño, Elina L. |
collection | PubMed |
description | Pheromones mediate social interactions among individuals in a wide variety of species, from yeast to mammals. In social insects such as honey bees, pheromone communication systems can be extraordinarily complex and serve to coordinate behaviors among many individuals. One of the primary mediators of social behavior and organization in honey bee colonies is queen pheromone, which is produced by multiple glands. The types and quantities of chemicals produced differ significantly between virgin and mated queens, and recent studies have suggested that, in newly mated queens, insemination volume or quantity can affect pheromone production. Here, we examine the long-term impact of different factors involved during queen insemination on the chemical composition of the mandibular and Dufour's glands, two of the major sources of queen pheromone. Our results demonstrate that carbon dioxide (an anesthetic used in instrumental insemination), physical manipulation of genital tract (presumably mimicking the act of copulation), insemination substance (saline vs. semen), and insemination volume (1 vs. 8 µl) all have long-term effects on mandibular gland chemical profiles. In contrast, Dufour's gland chemical profiles were changed only upon insemination and were not influenced by exposure to carbon dioxide, manipulation, insemination substance or volume. These results suggest that the chemical contents of these two glands are regulated by different neuro-physiological mechanisms. Furthermore, workers responded differently to the different mandibular gland extracts in a choice assay. Although these studies must be validated in naturally mated queens of varying mating quality, our results suggest that while the chemical composition of Dufour's gland is associated with mating status, that of the mandibular glands is associated with both mating status and insemination success. Thus, the queen appears to be signaling both status and reproductive quality to the workers, which may impact worker behavior and physiology as well as social organization and productivity of the colony. |
format | Online Article Text |
id | pubmed-3827242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38272422013-11-14 Chemical Profiles of Two Pheromone Glands Are Differentially Regulated by Distinct Mating Factors in Honey Bee Queens (Apis mellifera L.) Niño, Elina L. Malka, Osnat Hefetz, Abraham Tarpy, David R. Grozinger, Christina M. PLoS One Research Article Pheromones mediate social interactions among individuals in a wide variety of species, from yeast to mammals. In social insects such as honey bees, pheromone communication systems can be extraordinarily complex and serve to coordinate behaviors among many individuals. One of the primary mediators of social behavior and organization in honey bee colonies is queen pheromone, which is produced by multiple glands. The types and quantities of chemicals produced differ significantly between virgin and mated queens, and recent studies have suggested that, in newly mated queens, insemination volume or quantity can affect pheromone production. Here, we examine the long-term impact of different factors involved during queen insemination on the chemical composition of the mandibular and Dufour's glands, two of the major sources of queen pheromone. Our results demonstrate that carbon dioxide (an anesthetic used in instrumental insemination), physical manipulation of genital tract (presumably mimicking the act of copulation), insemination substance (saline vs. semen), and insemination volume (1 vs. 8 µl) all have long-term effects on mandibular gland chemical profiles. In contrast, Dufour's gland chemical profiles were changed only upon insemination and were not influenced by exposure to carbon dioxide, manipulation, insemination substance or volume. These results suggest that the chemical contents of these two glands are regulated by different neuro-physiological mechanisms. Furthermore, workers responded differently to the different mandibular gland extracts in a choice assay. Although these studies must be validated in naturally mated queens of varying mating quality, our results suggest that while the chemical composition of Dufour's gland is associated with mating status, that of the mandibular glands is associated with both mating status and insemination success. Thus, the queen appears to be signaling both status and reproductive quality to the workers, which may impact worker behavior and physiology as well as social organization and productivity of the colony. Public Library of Science 2013-11-13 /pmc/articles/PMC3827242/ /pubmed/24236028 http://dx.doi.org/10.1371/journal.pone.0078637 Text en © 2013 Niño et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Niño, Elina L. Malka, Osnat Hefetz, Abraham Tarpy, David R. Grozinger, Christina M. Chemical Profiles of Two Pheromone Glands Are Differentially Regulated by Distinct Mating Factors in Honey Bee Queens (Apis mellifera L.) |
title | Chemical Profiles of Two Pheromone Glands Are Differentially Regulated by Distinct Mating Factors in Honey Bee Queens (Apis mellifera L.) |
title_full | Chemical Profiles of Two Pheromone Glands Are Differentially Regulated by Distinct Mating Factors in Honey Bee Queens (Apis mellifera L.) |
title_fullStr | Chemical Profiles of Two Pheromone Glands Are Differentially Regulated by Distinct Mating Factors in Honey Bee Queens (Apis mellifera L.) |
title_full_unstemmed | Chemical Profiles of Two Pheromone Glands Are Differentially Regulated by Distinct Mating Factors in Honey Bee Queens (Apis mellifera L.) |
title_short | Chemical Profiles of Two Pheromone Glands Are Differentially Regulated by Distinct Mating Factors in Honey Bee Queens (Apis mellifera L.) |
title_sort | chemical profiles of two pheromone glands are differentially regulated by distinct mating factors in honey bee queens (apis mellifera l.) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827242/ https://www.ncbi.nlm.nih.gov/pubmed/24236028 http://dx.doi.org/10.1371/journal.pone.0078637 |
work_keys_str_mv | AT ninoelinal chemicalprofilesoftwopheromoneglandsaredifferentiallyregulatedbydistinctmatingfactorsinhoneybeequeensapismelliferal AT malkaosnat chemicalprofilesoftwopheromoneglandsaredifferentiallyregulatedbydistinctmatingfactorsinhoneybeequeensapismelliferal AT hefetzabraham chemicalprofilesoftwopheromoneglandsaredifferentiallyregulatedbydistinctmatingfactorsinhoneybeequeensapismelliferal AT tarpydavidr chemicalprofilesoftwopheromoneglandsaredifferentiallyregulatedbydistinctmatingfactorsinhoneybeequeensapismelliferal AT grozingerchristinam chemicalprofilesoftwopheromoneglandsaredifferentiallyregulatedbydistinctmatingfactorsinhoneybeequeensapismelliferal |