Cargando…
Macroscopic Equations Governing Noisy Spiking Neuronal Populations with Linear Synapses
Deriving tractable reduced equations of biological neural networks capturing the macroscopic dynamics of sub-populations of neurons has been a longstanding problem in computational neuroscience. In this paper, we propose a reduction of large-scale multi-population stochastic networks based on the me...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827287/ https://www.ncbi.nlm.nih.gov/pubmed/24236067 http://dx.doi.org/10.1371/journal.pone.0078917 |
_version_ | 1782291048023719936 |
---|---|
author | Galtier, Mathieu N. Touboul, Jonathan |
author_facet | Galtier, Mathieu N. Touboul, Jonathan |
author_sort | Galtier, Mathieu N. |
collection | PubMed |
description | Deriving tractable reduced equations of biological neural networks capturing the macroscopic dynamics of sub-populations of neurons has been a longstanding problem in computational neuroscience. In this paper, we propose a reduction of large-scale multi-population stochastic networks based on the mean-field theory. We derive, for a wide class of spiking neuron models, a system of differential equations of the type of the usual Wilson-Cowan systems describing the macroscopic activity of populations, under the assumption that synaptic integration is linear with random coefficients. Our reduction involves one unknown function, the effective non-linearity of the network of populations, which can be analytically determined in simple cases, and numerically computed in general. This function depends on the underlying properties of the cells, and in particular the noise level. Appropriate parameters and functions involved in the reduction are given for different models of neurons: McKean, Fitzhugh-Nagumo and Hodgkin-Huxley models. Simulations of the reduced model show a precise agreement with the macroscopic dynamics of the networks for the first two models. |
format | Online Article Text |
id | pubmed-3827287 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38272872013-11-14 Macroscopic Equations Governing Noisy Spiking Neuronal Populations with Linear Synapses Galtier, Mathieu N. Touboul, Jonathan PLoS One Research Article Deriving tractable reduced equations of biological neural networks capturing the macroscopic dynamics of sub-populations of neurons has been a longstanding problem in computational neuroscience. In this paper, we propose a reduction of large-scale multi-population stochastic networks based on the mean-field theory. We derive, for a wide class of spiking neuron models, a system of differential equations of the type of the usual Wilson-Cowan systems describing the macroscopic activity of populations, under the assumption that synaptic integration is linear with random coefficients. Our reduction involves one unknown function, the effective non-linearity of the network of populations, which can be analytically determined in simple cases, and numerically computed in general. This function depends on the underlying properties of the cells, and in particular the noise level. Appropriate parameters and functions involved in the reduction are given for different models of neurons: McKean, Fitzhugh-Nagumo and Hodgkin-Huxley models. Simulations of the reduced model show a precise agreement with the macroscopic dynamics of the networks for the first two models. Public Library of Science 2013-11-13 /pmc/articles/PMC3827287/ /pubmed/24236067 http://dx.doi.org/10.1371/journal.pone.0078917 Text en © 2013 Galtier, Touboul http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Galtier, Mathieu N. Touboul, Jonathan Macroscopic Equations Governing Noisy Spiking Neuronal Populations with Linear Synapses |
title | Macroscopic Equations Governing Noisy Spiking Neuronal Populations with Linear Synapses |
title_full | Macroscopic Equations Governing Noisy Spiking Neuronal Populations with Linear Synapses |
title_fullStr | Macroscopic Equations Governing Noisy Spiking Neuronal Populations with Linear Synapses |
title_full_unstemmed | Macroscopic Equations Governing Noisy Spiking Neuronal Populations with Linear Synapses |
title_short | Macroscopic Equations Governing Noisy Spiking Neuronal Populations with Linear Synapses |
title_sort | macroscopic equations governing noisy spiking neuronal populations with linear synapses |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827287/ https://www.ncbi.nlm.nih.gov/pubmed/24236067 http://dx.doi.org/10.1371/journal.pone.0078917 |
work_keys_str_mv | AT galtiermathieun macroscopicequationsgoverningnoisyspikingneuronalpopulationswithlinearsynapses AT toubouljonathan macroscopicequationsgoverningnoisyspikingneuronalpopulationswithlinearsynapses |