Cargando…
Multiple MAPK Cascades Regulate the Transcription of IME1, the Master Transcriptional Activator of Meiosis in Saccharomyces cerevisiae
The choice between alternative developmental pathways is primarily controlled at the level of transcription. Induction of meiosis in budding yeasts in response to nutrient levels provides a system to investigate the molecular basis of cellular decision-making. In Saccharomyces cerevisiae, entry into...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827324/ https://www.ncbi.nlm.nih.gov/pubmed/24236068 http://dx.doi.org/10.1371/journal.pone.0078920 |
_version_ | 1782291059769868288 |
---|---|
author | Kahana-Edwin, Smadar Stark, Michal Kassir, Yona |
author_facet | Kahana-Edwin, Smadar Stark, Michal Kassir, Yona |
author_sort | Kahana-Edwin, Smadar |
collection | PubMed |
description | The choice between alternative developmental pathways is primarily controlled at the level of transcription. Induction of meiosis in budding yeasts in response to nutrient levels provides a system to investigate the molecular basis of cellular decision-making. In Saccharomyces cerevisiae, entry into meiosis depends on multiple signals converging upon IME1, the master transcriptional activator of meiosis. Here we studied the regulation of the cis-acting regulatory element Upstream Activation Signal (UAS)ru, which resides within the IME1 promoter. Guided by our previous data acquired using a powerful high-throughput screening system, here we provide evidence that UASru is regulated by multiple stimuli that trigger distinct signal transduction pathways as follows: (i) The glucose signal inhibited UASru activity through the cyclic AMP (cAMP/protein kinase A (PKA) pathway, targeting the transcription factors (TFs), Com2 and Sko1; (ii) high osmolarity activated UASru through the Hog1/mitogen-activated protein kinase (MAPK) pathway and its corresponding TF Sko1; (iii) elevated temperature increased the activity of UASru through the cell wall integrity pathway and the TFs Swi4/Mpk1 and Swi4/Mlp1; (iv) the nitrogen source repressed UASru activity through Sum1; and (v) the absence of a nitrogen source was detected and transmitted to UASru by the Kss1 and Fus3 MAPK pathways through their respective downstream TFs, Ste12/Tec1 and Ste12/Ste12 as well as by their regulators Dig1/2. These signaling events were specific to UASru; they did not affect the mating and filamentation response elements that are regulated by MAPK pathways. The complex regulation of UASru through all the known vegetative MAPK pathways is unique to S. cerevisiae and is specific for IME1, likely because it is the master regulator of gametogenesis. |
format | Online Article Text |
id | pubmed-3827324 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38273242013-11-14 Multiple MAPK Cascades Regulate the Transcription of IME1, the Master Transcriptional Activator of Meiosis in Saccharomyces cerevisiae Kahana-Edwin, Smadar Stark, Michal Kassir, Yona PLoS One Research Article The choice between alternative developmental pathways is primarily controlled at the level of transcription. Induction of meiosis in budding yeasts in response to nutrient levels provides a system to investigate the molecular basis of cellular decision-making. In Saccharomyces cerevisiae, entry into meiosis depends on multiple signals converging upon IME1, the master transcriptional activator of meiosis. Here we studied the regulation of the cis-acting regulatory element Upstream Activation Signal (UAS)ru, which resides within the IME1 promoter. Guided by our previous data acquired using a powerful high-throughput screening system, here we provide evidence that UASru is regulated by multiple stimuli that trigger distinct signal transduction pathways as follows: (i) The glucose signal inhibited UASru activity through the cyclic AMP (cAMP/protein kinase A (PKA) pathway, targeting the transcription factors (TFs), Com2 and Sko1; (ii) high osmolarity activated UASru through the Hog1/mitogen-activated protein kinase (MAPK) pathway and its corresponding TF Sko1; (iii) elevated temperature increased the activity of UASru through the cell wall integrity pathway and the TFs Swi4/Mpk1 and Swi4/Mlp1; (iv) the nitrogen source repressed UASru activity through Sum1; and (v) the absence of a nitrogen source was detected and transmitted to UASru by the Kss1 and Fus3 MAPK pathways through their respective downstream TFs, Ste12/Tec1 and Ste12/Ste12 as well as by their regulators Dig1/2. These signaling events were specific to UASru; they did not affect the mating and filamentation response elements that are regulated by MAPK pathways. The complex regulation of UASru through all the known vegetative MAPK pathways is unique to S. cerevisiae and is specific for IME1, likely because it is the master regulator of gametogenesis. Public Library of Science 2013-11-13 /pmc/articles/PMC3827324/ /pubmed/24236068 http://dx.doi.org/10.1371/journal.pone.0078920 Text en © 2013 Kahana-Edwin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kahana-Edwin, Smadar Stark, Michal Kassir, Yona Multiple MAPK Cascades Regulate the Transcription of IME1, the Master Transcriptional Activator of Meiosis in Saccharomyces cerevisiae |
title | Multiple MAPK Cascades Regulate the Transcription of IME1, the Master Transcriptional Activator of Meiosis in Saccharomyces cerevisiae
|
title_full | Multiple MAPK Cascades Regulate the Transcription of IME1, the Master Transcriptional Activator of Meiosis in Saccharomyces cerevisiae
|
title_fullStr | Multiple MAPK Cascades Regulate the Transcription of IME1, the Master Transcriptional Activator of Meiosis in Saccharomyces cerevisiae
|
title_full_unstemmed | Multiple MAPK Cascades Regulate the Transcription of IME1, the Master Transcriptional Activator of Meiosis in Saccharomyces cerevisiae
|
title_short | Multiple MAPK Cascades Regulate the Transcription of IME1, the Master Transcriptional Activator of Meiosis in Saccharomyces cerevisiae
|
title_sort | multiple mapk cascades regulate the transcription of ime1, the master transcriptional activator of meiosis in saccharomyces cerevisiae |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827324/ https://www.ncbi.nlm.nih.gov/pubmed/24236068 http://dx.doi.org/10.1371/journal.pone.0078920 |
work_keys_str_mv | AT kahanaedwinsmadar multiplemapkcascadesregulatethetranscriptionofime1themastertranscriptionalactivatorofmeiosisinsaccharomycescerevisiae AT starkmichal multiplemapkcascadesregulatethetranscriptionofime1themastertranscriptionalactivatorofmeiosisinsaccharomycescerevisiae AT kassiryona multiplemapkcascadesregulatethetranscriptionofime1themastertranscriptionalactivatorofmeiosisinsaccharomycescerevisiae |