Cargando…
Spo0A Differentially Regulates Toxin Production in Evolutionarily Diverse Strains of Clostridium difficile
Clostridium difficile is an important pathogen of humans and animals, representing a significant global healthcare problem. The last decade has seen the emergence of epidemic BI/NAP1/027 and ribotype 078 isolates, associated with the onset of more severe disease and higher rates of morbidity and mor...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827441/ https://www.ncbi.nlm.nih.gov/pubmed/24236153 http://dx.doi.org/10.1371/journal.pone.0079666 |
_version_ | 1782478240703578112 |
---|---|
author | Mackin, Kate E. Carter, Glen P. Howarth, Pauline Rood, Julian I. Lyras, Dena |
author_facet | Mackin, Kate E. Carter, Glen P. Howarth, Pauline Rood, Julian I. Lyras, Dena |
author_sort | Mackin, Kate E. |
collection | PubMed |
description | Clostridium difficile is an important pathogen of humans and animals, representing a significant global healthcare problem. The last decade has seen the emergence of epidemic BI/NAP1/027 and ribotype 078 isolates, associated with the onset of more severe disease and higher rates of morbidity and mortality. However, little is known about these isolates at the molecular level, partly due to difficulties in the genetic manipulation of these strains. Here we report the development of an optimised Tn916-mediated plasmid transfer system, and the use of this system to construct and complement spo0A mutants in a number of different C. difficile strain backgrounds. Spo0A is a global regulator known to control sporulation, but may also be involved in the regulation of potential virulence factors and other phenotypes. Recent studies have failed to elucidate the role of Spo0A in toxin A and toxin B production by C. difficile, with conflicting data published to date. In this study, we aimed to clarify the role of Spo0A in production of the major toxins by C. difficile. Through the construction and complementation of spo0A mutants in two ribotype 027 isolates, we demonstrate that Spo0A acts as a negative regulator of toxin A and toxin B production in this strain background. In addition, spo0A was disrupted and subsequently complemented in strain 630Δerm and, for the first time, in a ribotype 078 isolate, JGS6133. In contrast to the ribotype 027 strains, Spo0A does not appear to regulate toxin production in strain 630Δerm. In strain JGS6133, Spo0A appears to negatively regulate toxin production during early stationary phase, but has little effect on toxin expression during late stationary phase. These data suggest that Spo0A may differentially regulate toxin production in phylogenetically distinct C. difficile strain types. In addition, Spo0A may be involved in regulating some aspects of C. difficile motility. |
format | Online Article Text |
id | pubmed-3827441 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38274412013-11-14 Spo0A Differentially Regulates Toxin Production in Evolutionarily Diverse Strains of Clostridium difficile Mackin, Kate E. Carter, Glen P. Howarth, Pauline Rood, Julian I. Lyras, Dena PLoS One Research Article Clostridium difficile is an important pathogen of humans and animals, representing a significant global healthcare problem. The last decade has seen the emergence of epidemic BI/NAP1/027 and ribotype 078 isolates, associated with the onset of more severe disease and higher rates of morbidity and mortality. However, little is known about these isolates at the molecular level, partly due to difficulties in the genetic manipulation of these strains. Here we report the development of an optimised Tn916-mediated plasmid transfer system, and the use of this system to construct and complement spo0A mutants in a number of different C. difficile strain backgrounds. Spo0A is a global regulator known to control sporulation, but may also be involved in the regulation of potential virulence factors and other phenotypes. Recent studies have failed to elucidate the role of Spo0A in toxin A and toxin B production by C. difficile, with conflicting data published to date. In this study, we aimed to clarify the role of Spo0A in production of the major toxins by C. difficile. Through the construction and complementation of spo0A mutants in two ribotype 027 isolates, we demonstrate that Spo0A acts as a negative regulator of toxin A and toxin B production in this strain background. In addition, spo0A was disrupted and subsequently complemented in strain 630Δerm and, for the first time, in a ribotype 078 isolate, JGS6133. In contrast to the ribotype 027 strains, Spo0A does not appear to regulate toxin production in strain 630Δerm. In strain JGS6133, Spo0A appears to negatively regulate toxin production during early stationary phase, but has little effect on toxin expression during late stationary phase. These data suggest that Spo0A may differentially regulate toxin production in phylogenetically distinct C. difficile strain types. In addition, Spo0A may be involved in regulating some aspects of C. difficile motility. Public Library of Science 2013-11-13 /pmc/articles/PMC3827441/ /pubmed/24236153 http://dx.doi.org/10.1371/journal.pone.0079666 Text en © 2013 Mackin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Mackin, Kate E. Carter, Glen P. Howarth, Pauline Rood, Julian I. Lyras, Dena Spo0A Differentially Regulates Toxin Production in Evolutionarily Diverse Strains of Clostridium difficile |
title | Spo0A Differentially Regulates Toxin Production in Evolutionarily Diverse Strains of Clostridium difficile
|
title_full | Spo0A Differentially Regulates Toxin Production in Evolutionarily Diverse Strains of Clostridium difficile
|
title_fullStr | Spo0A Differentially Regulates Toxin Production in Evolutionarily Diverse Strains of Clostridium difficile
|
title_full_unstemmed | Spo0A Differentially Regulates Toxin Production in Evolutionarily Diverse Strains of Clostridium difficile
|
title_short | Spo0A Differentially Regulates Toxin Production in Evolutionarily Diverse Strains of Clostridium difficile
|
title_sort | spo0a differentially regulates toxin production in evolutionarily diverse strains of clostridium difficile |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827441/ https://www.ncbi.nlm.nih.gov/pubmed/24236153 http://dx.doi.org/10.1371/journal.pone.0079666 |
work_keys_str_mv | AT mackinkatee spo0adifferentiallyregulatestoxinproductioninevolutionarilydiversestrainsofclostridiumdifficile AT carterglenp spo0adifferentiallyregulatestoxinproductioninevolutionarilydiversestrainsofclostridiumdifficile AT howarthpauline spo0adifferentiallyregulatestoxinproductioninevolutionarilydiversestrainsofclostridiumdifficile AT roodjuliani spo0adifferentiallyregulatestoxinproductioninevolutionarilydiversestrainsofclostridiumdifficile AT lyrasdena spo0adifferentiallyregulatestoxinproductioninevolutionarilydiversestrainsofclostridiumdifficile |