Cargando…

Adaptations in Muscle Activity to Induced, Short-Term Hindlimb Lameness in Trotting Dogs

Muscle tissue has a great intrinsic adaptability to changing functional demands. Triggering more gradual responses such as tissue growth, the immediate responses to altered loading conditions involve changes in the activity. Because the reduction in a limb’s function is associated with marked deviat...

Descripción completa

Detalles Bibliográficos
Autores principales: Fischer, Stefanie, Nolte, Ingo, Schilling, Nadja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827467/
https://www.ncbi.nlm.nih.gov/pubmed/24236207
http://dx.doi.org/10.1371/journal.pone.0080987
Descripción
Sumario:Muscle tissue has a great intrinsic adaptability to changing functional demands. Triggering more gradual responses such as tissue growth, the immediate responses to altered loading conditions involve changes in the activity. Because the reduction in a limb’s function is associated with marked deviations in the gait pattern, understanding the muscular responses in laming animals will provide further insight into their compensatory mechanisms as well as help to improve treatment options to prevent musculoskeletal sequelae in chronic patients. Therefore, this study evaluated the changes in muscle activity in adaptation to a moderate, short-term, weight-bearing hindlimb lameness in two leg and one back muscle using surface electromyography (SEMG). In eight sound adult dogs that trotted on an instrumented treadmill, bilateral, bipolar recordings of the m. triceps brachii, the m. vastus lateralis and the m. longissimus dorsi were obtained before and after lameness was induced. Consistent with the unchanged vertical forces as well as temporal parameters, neither the timing nor the level of activity changed significantly in the m. triceps brachii. In the ipsilateral m. vastus lateralis, peak activity and integrated SEMG area were decreased, while they were significantly increased in the contralateral hindlimb. In both sides, the duration of the muscle activity was significantly longer due to a delayed offset. These observations are in accordance with previously described kinetic and kinematic changes as well as changes in muscle mass. Adaptations in the activity of the m. longissimus dorsi concerned primarily the unilateral activity and are discussed regarding known alterations in trunk and limb motions.