Cargando…
Direct cadaverine production from cellobiose using β-glucosidase displaying Escherichia coli
In this study, we demonstrate the one-step production of cadaverine (1,5-diaminopentane) from cellobiose using an Escherichia coli strain displaying β-glucosidase (BGL) on its cell surface. L-lysine decarboxylase (CadA) derived from E. coli and BGL from Thermobifida fusca YX (Tfu0937) fused to the a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827850/ https://www.ncbi.nlm.nih.gov/pubmed/24206923 http://dx.doi.org/10.1186/2191-0855-3-67 |
Sumario: | In this study, we demonstrate the one-step production of cadaverine (1,5-diaminopentane) from cellobiose using an Escherichia coli strain displaying β-glucosidase (BGL) on its cell surface. L-lysine decarboxylase (CadA) derived from E. coli and BGL from Thermobifida fusca YX (Tfu0937) fused to the anchor protein Blc from E. coli were co-expressed using E. coli as a host. The expression of CadA was confirmed by Western blotting and BGL activity on the cell surface was evaluated using pNPG as a substrate. Growth on cellobiose as the sole carbon source was also achieved. The OD600 value of the BGL and CadA co-expressing strain was 8.0 after 48 h cultivation, which is higher than that obtained by growth on glucose (5.4 after 48 h cultivation). The engineered strain produced cadaverine from cellobiose more effectively than from glucose: 6.1 mM after 48 h from 28 g/L of consumed cellobiose, vs. 3.3 mM from 20 g/L of consumed glucose. |
---|