Cargando…
Identification and characterization of microRNAs involved in growth of blunt snout bream (Megalobrama amblycephala) by Solexa sequencing
BACKGROUND: Blunt snout bream (Megalobrama amblycephala) is an economically important fish species in the Chinese freshwater polyculture system for its delicacy and high economic value. MicroRNAs (miRNAs) play important roles in regulation of almost all biological processes in eukaryotes. Although p...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827868/ https://www.ncbi.nlm.nih.gov/pubmed/24188211 http://dx.doi.org/10.1186/1471-2164-14-754 |
_version_ | 1782478298440269824 |
---|---|
author | Yi, Shaokui Gao, Ze-Xia Zhao, Honghao Zeng, Cong Luo, Wei Chen, Boxiang Wang, Wei-Min |
author_facet | Yi, Shaokui Gao, Ze-Xia Zhao, Honghao Zeng, Cong Luo, Wei Chen, Boxiang Wang, Wei-Min |
author_sort | Yi, Shaokui |
collection | PubMed |
description | BACKGROUND: Blunt snout bream (Megalobrama amblycephala) is an economically important fish species in the Chinese freshwater polyculture system for its delicacy and high economic value. MicroRNAs (miRNAs) play important roles in regulation of almost all biological processes in eukaryotes. Although previous studies have identified thousands of miRNAs from many species, little information is known for miRNAs of M. amblycephala. To investigate functions of miRNAs associated with growth of M. amblycephala, we adopted the Solexa sequencing technology to sequence two small RNA libraries prepared from four growth related tissues (brain, pituitary, liver and muscle) of M. amblycephala using individuals with relatively high and low growth rates. RESULTS: In this study, we have identified 347 conserved miRNAs (belonging to 123 families) and 22 novel miRNAs in M. amblycephala. Moreover, we observed sequence variants and seed edits of the miRNAs. Of the 5,166 single nucleotide substitutions observed in two libraries, the most abundant were G-to-U (15.9%), followed by U-to-C (12.1%), G-to-A (11.2%), and A to G (11.2%). Subsequently, we compared the expression patterns of miRNAs in the two libraries (big-size group with high growth rate versus small-size group with low growth rate). Results indicated that 27 miRNAs displayed significant differential expressions between the two libraries (p < 0.05). Of these, 16 were significantly up-regulated and 11 were significantly down-regulated in the big-size group compared to the small-size group. Furthermore, stem-loop RT-PCR was applied to validate and profile the expression of the differentially expressed miRNAs in ten tissues, and the result revealed that the conserved miRNAs expressed at higher levels than the novel miRNAs, especially in brain, liver and muscle. Also, targets prediction of differentially expressed miRNAs and KEGG pathway analysis suggested that differentially expressed miRNAs are involved in growth and metabolism, signal transduction, cell cycle, neural development and functions. CONCLUSIONS: The present study provides the first large-scale characterization of miRNAs in M. amblycephala and miRNA profile related to different growth performances. The discovery of miRNA resource from this study is expected to contribute to a better understanding of the miRNAs roles playing in regulating the growth biological processes and the study of miRNA function and phenotype-associated miRNA identification in fish. |
format | Online Article Text |
id | pubmed-3827868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38278682013-11-20 Identification and characterization of microRNAs involved in growth of blunt snout bream (Megalobrama amblycephala) by Solexa sequencing Yi, Shaokui Gao, Ze-Xia Zhao, Honghao Zeng, Cong Luo, Wei Chen, Boxiang Wang, Wei-Min BMC Genomics Research Article BACKGROUND: Blunt snout bream (Megalobrama amblycephala) is an economically important fish species in the Chinese freshwater polyculture system for its delicacy and high economic value. MicroRNAs (miRNAs) play important roles in regulation of almost all biological processes in eukaryotes. Although previous studies have identified thousands of miRNAs from many species, little information is known for miRNAs of M. amblycephala. To investigate functions of miRNAs associated with growth of M. amblycephala, we adopted the Solexa sequencing technology to sequence two small RNA libraries prepared from four growth related tissues (brain, pituitary, liver and muscle) of M. amblycephala using individuals with relatively high and low growth rates. RESULTS: In this study, we have identified 347 conserved miRNAs (belonging to 123 families) and 22 novel miRNAs in M. amblycephala. Moreover, we observed sequence variants and seed edits of the miRNAs. Of the 5,166 single nucleotide substitutions observed in two libraries, the most abundant were G-to-U (15.9%), followed by U-to-C (12.1%), G-to-A (11.2%), and A to G (11.2%). Subsequently, we compared the expression patterns of miRNAs in the two libraries (big-size group with high growth rate versus small-size group with low growth rate). Results indicated that 27 miRNAs displayed significant differential expressions between the two libraries (p < 0.05). Of these, 16 were significantly up-regulated and 11 were significantly down-regulated in the big-size group compared to the small-size group. Furthermore, stem-loop RT-PCR was applied to validate and profile the expression of the differentially expressed miRNAs in ten tissues, and the result revealed that the conserved miRNAs expressed at higher levels than the novel miRNAs, especially in brain, liver and muscle. Also, targets prediction of differentially expressed miRNAs and KEGG pathway analysis suggested that differentially expressed miRNAs are involved in growth and metabolism, signal transduction, cell cycle, neural development and functions. CONCLUSIONS: The present study provides the first large-scale characterization of miRNAs in M. amblycephala and miRNA profile related to different growth performances. The discovery of miRNA resource from this study is expected to contribute to a better understanding of the miRNAs roles playing in regulating the growth biological processes and the study of miRNA function and phenotype-associated miRNA identification in fish. BioMed Central 2013-11-05 /pmc/articles/PMC3827868/ /pubmed/24188211 http://dx.doi.org/10.1186/1471-2164-14-754 Text en Copyright © 2013 Yi et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yi, Shaokui Gao, Ze-Xia Zhao, Honghao Zeng, Cong Luo, Wei Chen, Boxiang Wang, Wei-Min Identification and characterization of microRNAs involved in growth of blunt snout bream (Megalobrama amblycephala) by Solexa sequencing |
title | Identification and characterization of microRNAs involved in growth of blunt snout bream (Megalobrama amblycephala) by Solexa sequencing |
title_full | Identification and characterization of microRNAs involved in growth of blunt snout bream (Megalobrama amblycephala) by Solexa sequencing |
title_fullStr | Identification and characterization of microRNAs involved in growth of blunt snout bream (Megalobrama amblycephala) by Solexa sequencing |
title_full_unstemmed | Identification and characterization of microRNAs involved in growth of blunt snout bream (Megalobrama amblycephala) by Solexa sequencing |
title_short | Identification and characterization of microRNAs involved in growth of blunt snout bream (Megalobrama amblycephala) by Solexa sequencing |
title_sort | identification and characterization of micrornas involved in growth of blunt snout bream (megalobrama amblycephala) by solexa sequencing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827868/ https://www.ncbi.nlm.nih.gov/pubmed/24188211 http://dx.doi.org/10.1186/1471-2164-14-754 |
work_keys_str_mv | AT yishaokui identificationandcharacterizationofmicrornasinvolvedingrowthofbluntsnoutbreammegalobramaamblycephalabysolexasequencing AT gaozexia identificationandcharacterizationofmicrornasinvolvedingrowthofbluntsnoutbreammegalobramaamblycephalabysolexasequencing AT zhaohonghao identificationandcharacterizationofmicrornasinvolvedingrowthofbluntsnoutbreammegalobramaamblycephalabysolexasequencing AT zengcong identificationandcharacterizationofmicrornasinvolvedingrowthofbluntsnoutbreammegalobramaamblycephalabysolexasequencing AT luowei identificationandcharacterizationofmicrornasinvolvedingrowthofbluntsnoutbreammegalobramaamblycephalabysolexasequencing AT chenboxiang identificationandcharacterizationofmicrornasinvolvedingrowthofbluntsnoutbreammegalobramaamblycephalabysolexasequencing AT wangweimin identificationandcharacterizationofmicrornasinvolvedingrowthofbluntsnoutbreammegalobramaamblycephalabysolexasequencing |