Cargando…
Computational prediction of associations between long non-coding RNAs and proteins
BACKGROUND: Though most of the transcripts are long non-coding RNAs (lncRNAs), little is known about their functions. lncRNAs usually function through interactions with proteins, which implies the importance of identifying the binding proteins of lncRNAs in understanding the molecular mechanisms und...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827931/ https://www.ncbi.nlm.nih.gov/pubmed/24063787 http://dx.doi.org/10.1186/1471-2164-14-651 |
_version_ | 1782291166741397504 |
---|---|
author | Lu, Qiongshi Ren, Sijin Lu, Ming Zhang, Yong Zhu, Dahai Zhang, Xuegong Li, Tingting |
author_facet | Lu, Qiongshi Ren, Sijin Lu, Ming Zhang, Yong Zhu, Dahai Zhang, Xuegong Li, Tingting |
author_sort | Lu, Qiongshi |
collection | PubMed |
description | BACKGROUND: Though most of the transcripts are long non-coding RNAs (lncRNAs), little is known about their functions. lncRNAs usually function through interactions with proteins, which implies the importance of identifying the binding proteins of lncRNAs in understanding the molecular mechanisms underlying the functions of lncRNAs. Only a few approaches are available for predicting interactions between lncRNAs and proteins. In this study, we introduce a new method lncPro. RESULTS: By encoding RNA and protein sequences into numeric vectors, we used matrix multiplication to score each RNA–protein pair. This score can be used to measure the interactions between an RNA–protein pair. This method effectively discriminates interacting and non-interacting RNA–protein pairs and predicts RNA–protein interactions within a given complex. Applying this method on all human proteins, we found that the long non-coding RNAs we collected tend to interact with nuclear proteins and RNA-binding proteins. CONCLUSIONS: Compared with the existing approaches, our method shortens the time for training matrix and obtains optimal results based on the model being used. The ability of predicting the associations between lncRNAs and proteins has also been enhanced. Our method provides an idea on how to integrate different information into the prediction process. |
format | Online Article Text |
id | pubmed-3827931 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38279312013-11-20 Computational prediction of associations between long non-coding RNAs and proteins Lu, Qiongshi Ren, Sijin Lu, Ming Zhang, Yong Zhu, Dahai Zhang, Xuegong Li, Tingting BMC Genomics Methodology Article BACKGROUND: Though most of the transcripts are long non-coding RNAs (lncRNAs), little is known about their functions. lncRNAs usually function through interactions with proteins, which implies the importance of identifying the binding proteins of lncRNAs in understanding the molecular mechanisms underlying the functions of lncRNAs. Only a few approaches are available for predicting interactions between lncRNAs and proteins. In this study, we introduce a new method lncPro. RESULTS: By encoding RNA and protein sequences into numeric vectors, we used matrix multiplication to score each RNA–protein pair. This score can be used to measure the interactions between an RNA–protein pair. This method effectively discriminates interacting and non-interacting RNA–protein pairs and predicts RNA–protein interactions within a given complex. Applying this method on all human proteins, we found that the long non-coding RNAs we collected tend to interact with nuclear proteins and RNA-binding proteins. CONCLUSIONS: Compared with the existing approaches, our method shortens the time for training matrix and obtains optimal results based on the model being used. The ability of predicting the associations between lncRNAs and proteins has also been enhanced. Our method provides an idea on how to integrate different information into the prediction process. BioMed Central 2013-09-24 /pmc/articles/PMC3827931/ /pubmed/24063787 http://dx.doi.org/10.1186/1471-2164-14-651 Text en Copyright © 2013 Lu et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Lu, Qiongshi Ren, Sijin Lu, Ming Zhang, Yong Zhu, Dahai Zhang, Xuegong Li, Tingting Computational prediction of associations between long non-coding RNAs and proteins |
title | Computational prediction of associations between long non-coding RNAs and proteins |
title_full | Computational prediction of associations between long non-coding RNAs and proteins |
title_fullStr | Computational prediction of associations between long non-coding RNAs and proteins |
title_full_unstemmed | Computational prediction of associations between long non-coding RNAs and proteins |
title_short | Computational prediction of associations between long non-coding RNAs and proteins |
title_sort | computational prediction of associations between long non-coding rnas and proteins |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827931/ https://www.ncbi.nlm.nih.gov/pubmed/24063787 http://dx.doi.org/10.1186/1471-2164-14-651 |
work_keys_str_mv | AT luqiongshi computationalpredictionofassociationsbetweenlongnoncodingrnasandproteins AT rensijin computationalpredictionofassociationsbetweenlongnoncodingrnasandproteins AT luming computationalpredictionofassociationsbetweenlongnoncodingrnasandproteins AT zhangyong computationalpredictionofassociationsbetweenlongnoncodingrnasandproteins AT zhudahai computationalpredictionofassociationsbetweenlongnoncodingrnasandproteins AT zhangxuegong computationalpredictionofassociationsbetweenlongnoncodingrnasandproteins AT litingting computationalpredictionofassociationsbetweenlongnoncodingrnasandproteins |