Cargando…
Stochastic Computations in Cortical Microcircuit Models
Experimental data from neuroscience suggest that a substantial amount of knowledge is stored in the brain in the form of probability distributions over network states and trajectories of network states. We provide a theoretical foundation for this hypothesis by showing that even very detailed models...
Autores principales: | Habenschuss, Stefan, Jonke, Zeno, Maass, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828141/ https://www.ncbi.nlm.nih.gov/pubmed/24244126 http://dx.doi.org/10.1371/journal.pcbi.1003311 |
Ejemplares similares
-
Solving Constraint Satisfaction Problems with Networks of Spiking Neurons
por: Jonke, Zeno, et al.
Publicado: (2016) -
Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity
por: Nessler, Bernhard, et al.
Publicado: (2013) -
Myelin and Modeling: Bootstrapping Cortical Microcircuits
por: Turner, Robert
Publicado: (2019) -
Characterizing the temporal dynamics of cortical microcircuits: first and second order kernels for a cortical microcircuit
por: Ulinski, Philip
Publicado: (2010) -
Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition
por: Bill, Johannes, et al.
Publicado: (2015)