Cargando…
Synaptic Plasticity in Neural Networks Needs Homeostasis with a Fast Rate Detector
Hebbian changes of excitatory synapses are driven by and further enhance correlations between pre- and postsynaptic activities. Hence, Hebbian plasticity forms a positive feedback loop that can lead to instability in simulated neural networks. To keep activity at healthy, low levels, plasticity must...
Autores principales: | Zenke, Friedemann, Hennequin, Guillaume, Gerstner, Wulfram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828150/ https://www.ncbi.nlm.nih.gov/pubmed/24244138 http://dx.doi.org/10.1371/journal.pcbi.1003330 |
Ejemplares similares
-
Plasticity and stability in recurrent neural networks
por: Zenke, Friedemann, et al.
Publicado: (2011) -
Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks
por: Zenke, Friedemann, et al.
Publicado: (2015) -
Limits to high-speed simulations of spiking neural networks using general-purpose computers
por: Zenke, Friedemann, et al.
Publicado: (2014) -
Hebbian plasticity requires compensatory processes on multiple timescales
por: Zenke, Friedemann, et al.
Publicado: (2017) -
Mesoscopic population equations for spiking neural networks with synaptic short-term plasticity
por: Schmutz, Valentin, et al.
Publicado: (2020)