Cargando…

Characterization of a Bifunctional O- and N-Glucosyltransferase from Vitis vinifera in Glucosylating Phenolic Compounds and 3,4-dichloroaniline in Pichia pastoris and Arabidopsis thaliana

2,4,5-Trichlorophenol, 2,6-dimethylphenol, 3-methylcatechol, phenol, hydroquinone, catechol, and 3,4-dichloroaniline are present in the environment and are risky to humans and animals because of their wide applications in many industries. In this study, a putative uridine diphosphate glucose-depende...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Zhi-Sheng, Xue, Wei, Xiong, Ai-Sheng, Lin, Ya-Qiu, Xu, Jing, Zhu, Bo, Zhao, Wei, Peng, Ri-He, Yao, Quan-Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828253/
https://www.ncbi.nlm.nih.gov/pubmed/24244688
http://dx.doi.org/10.1371/journal.pone.0080449
Descripción
Sumario:2,4,5-Trichlorophenol, 2,6-dimethylphenol, 3-methylcatechol, phenol, hydroquinone, catechol, and 3,4-dichloroaniline are present in the environment and are risky to humans and animals because of their wide applications in many industries. In this study, a putative uridine diphosphate glucose-dependent glycosyltransferase from Vitis vinifera (VvUGT72B1) displayed high O-glucosyltransferase or N-glucosyltransferase activity toward all these xenbiotics and was able to enhance the resistance of P. pastoris to them. Compared with wild-type Arabidopsis plants, VvUGT72B1-transgenic Arabidopsis plants showed higher resistance to all the xenobiotics except for phenol and exhibited higher removal efficiencies against all xenobiotics. Glucosides of 3-methylcatechol, 2,6-dimethylphenol, phenol, and 3,4-dichloroaniline were exported to the surrounding media by Arabidopsis plants while transgenic Arabidopsis plants exported more glucosides than wild-type Arabidopsis plants. Our findings have the potential to provide a broader spectrum remediation strategy for the phytoremoval and degradation of phenolic compounds and 3,4-dichloroaniline than previous works.