Cargando…
What Can We Learn from Global Sensitivity Analysis of Biochemical Systems?
Most biological models of intermediate size, and probably all large models, need to cope with the fact that many of their parameter values are unknown. In addition, it may not be possible to identify these values unambiguously on the basis of experimental data. This poses the question how reliable p...
Autores principales: | Kent, Edward, Neumann, Stefan, Kummer, Ursula, Mendes, Pedro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828278/ https://www.ncbi.nlm.nih.gov/pubmed/24244458 http://dx.doi.org/10.1371/journal.pone.0079244 |
Ejemplares similares
-
Condor-COPASI: high-throughput computing for biochemical networks
por: Kent, Edward, et al.
Publicado: (2012) -
The French Health Care System; What can We Learn?
por: El Taguri, A, et al.
Publicado: (2008) -
Jets: what we can still learn....
por: Humpert, Benedikt, et al.
Publicado: (1984) -
What can we learn from China’s health system reform?
por: Meng, Qingyue, et al.
Publicado: (2019) -
What Can We Learn from Brazil's Health Care System?
por: Qi, Yanling, et al.
Publicado: (2020)