Cargando…
Metal-dependent gene regulation in the causative agent of Lyme disease
Borrelia burgdorferi (Bb) is the causative agent of Lyme disease transmitted to humans by ticks of the Ixodes spp. Bb is a unique bacterial pathogen because it does not require iron (Fe(2+)) for its metabolism. Bb encodes a ferritin-like Dps homolog called NapA (also called BicA), which can bind Fe...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828560/ https://www.ncbi.nlm.nih.gov/pubmed/24298449 http://dx.doi.org/10.3389/fcimb.2013.00079 |
_version_ | 1782291259639988224 |
---|---|
author | Troxell, Bryan Yang, X. Frank |
author_facet | Troxell, Bryan Yang, X. Frank |
author_sort | Troxell, Bryan |
collection | PubMed |
description | Borrelia burgdorferi (Bb) is the causative agent of Lyme disease transmitted to humans by ticks of the Ixodes spp. Bb is a unique bacterial pathogen because it does not require iron (Fe(2+)) for its metabolism. Bb encodes a ferritin-like Dps homolog called NapA (also called BicA), which can bind Fe or copper (Cu(2+)), and a manganese (Mn(2+)) transport protein, Borrelia metal transporter A (BmtA); both proteins are required for colonization of the tick vector, but BmtA is also required for the murine host. This demonstrates that Bb's metal homeostasis is a critical facet of the complex enzootic life cycle between the arthropod and murine hosts. Although metals are known to influence the expression of virulence determinants during infection, it is unknown how or if metals regulate virulence in Bb. Recent evidence demonstrates that Bb modulates the intracellular Mn(2+) and zinc (Zn(2+)) content and, in turn, these metals regulate gene expression through influencing the Ferric Uptake Regulator (Fur) homolog Borrelia Oxidative Stress Regulator (BosR). This mini-review focuses on the burgeoning study of metal-dependent gene regulation within Bb. |
format | Online Article Text |
id | pubmed-3828560 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-38285602013-12-02 Metal-dependent gene regulation in the causative agent of Lyme disease Troxell, Bryan Yang, X. Frank Front Cell Infect Microbiol Microbiology Borrelia burgdorferi (Bb) is the causative agent of Lyme disease transmitted to humans by ticks of the Ixodes spp. Bb is a unique bacterial pathogen because it does not require iron (Fe(2+)) for its metabolism. Bb encodes a ferritin-like Dps homolog called NapA (also called BicA), which can bind Fe or copper (Cu(2+)), and a manganese (Mn(2+)) transport protein, Borrelia metal transporter A (BmtA); both proteins are required for colonization of the tick vector, but BmtA is also required for the murine host. This demonstrates that Bb's metal homeostasis is a critical facet of the complex enzootic life cycle between the arthropod and murine hosts. Although metals are known to influence the expression of virulence determinants during infection, it is unknown how or if metals regulate virulence in Bb. Recent evidence demonstrates that Bb modulates the intracellular Mn(2+) and zinc (Zn(2+)) content and, in turn, these metals regulate gene expression through influencing the Ferric Uptake Regulator (Fur) homolog Borrelia Oxidative Stress Regulator (BosR). This mini-review focuses on the burgeoning study of metal-dependent gene regulation within Bb. Frontiers Media S.A. 2013-11-15 /pmc/articles/PMC3828560/ /pubmed/24298449 http://dx.doi.org/10.3389/fcimb.2013.00079 Text en Copyright © 2013 Troxell and Yang. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Troxell, Bryan Yang, X. Frank Metal-dependent gene regulation in the causative agent of Lyme disease |
title | Metal-dependent gene regulation in the causative agent of Lyme disease |
title_full | Metal-dependent gene regulation in the causative agent of Lyme disease |
title_fullStr | Metal-dependent gene regulation in the causative agent of Lyme disease |
title_full_unstemmed | Metal-dependent gene regulation in the causative agent of Lyme disease |
title_short | Metal-dependent gene regulation in the causative agent of Lyme disease |
title_sort | metal-dependent gene regulation in the causative agent of lyme disease |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828560/ https://www.ncbi.nlm.nih.gov/pubmed/24298449 http://dx.doi.org/10.3389/fcimb.2013.00079 |
work_keys_str_mv | AT troxellbryan metaldependentgeneregulationinthecausativeagentoflymedisease AT yangxfrank metaldependentgeneregulationinthecausativeagentoflymedisease |