Cargando…
Translational up-regulation of Aurora-A in EGFR-overexpressed cancer
Abnormal expression of Aurora-A and epidermal growth factor receptor (EGFR) is observed in different kinds of cancer and associated with poor prognosis in cancer patients. However, the relationship between Aurora-A and EGFR in tumour development was not clear. In previous reports, we found that EGFR...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829018/ https://www.ncbi.nlm.nih.gov/pubmed/19799648 http://dx.doi.org/10.1111/j.1582-4934.2009.00919.x |
Sumario: | Abnormal expression of Aurora-A and epidermal growth factor receptor (EGFR) is observed in different kinds of cancer and associated with poor prognosis in cancer patients. However, the relationship between Aurora-A and EGFR in tumour development was not clear. In previous reports, we found that EGFR translocates to nucleus to activate Aurora-A expression after EGF treatment in EGFR-overexpressed cells. However, we also observed that not all the EGFR-overexpressed cells have the nuclear EGFR pathway to mediate the Aurora-A expression. In this study, we demonstrated that EGF signalling increased the Aurora-A protein expression in EGFR-overexpressed colorectal cancer cell lines via increasing the translational efficiency. In addition, the overexpression of EGFR was also associated with higher expression of Aurora-A in clinical colorectal samples. Activation of the PI3K/Akt/mTOR and MEK/ERK pathways mediated the effect of EGF-induced translational up-regulation. Besides, only the splicing variants containing exon 2 of Aurora-A mRNA showed increased interaction with the translational complex to synthesize Aurora-A protein under EGF stimulus. Besides, the exon 2 containing splicing variants were the major Aurora-A splicing forms expressed in human colorectal cancers. Taken together, our results propose a novel regulatory mechanism for the abnormal expression of Aurora-A in EGFR-overexpressed cancers, and highlight the importance of alternative 5′-UTR splicing variants in regulating Aurora-A expression. Furthermore, the specific expression of exon 2 containing splicing variants in cancer tissues may serve as a potential target for cancer therapy in the future. |
---|