Cargando…
The ripple pond: enabling spiking networks to see
We present the biologically inspired Ripple Pond Network (RPN), a simply connected spiking neural network which performs a transformation converting two dimensional images to one dimensional temporal patterns (TP) suitable for recognition by temporal coding learning and memory networks. The RPN has...
Autores principales: | Afshar, Saeed, Cohen, Gregory K., Wang, Runchun M., Van Schaik, André, Tapson, Jonathan, Lehmann, Torsten, Hamilton, Tara J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829577/ https://www.ncbi.nlm.nih.gov/pubmed/24298234 http://dx.doi.org/10.3389/fnins.2013.00212 |
Ejemplares similares
-
An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation
por: Wang, Runchun, et al.
Publicado: (2013) -
Synthesis of neural networks for spatio-temporal spike pattern recognition and processing
por: Tapson, Jonathan C., et al.
Publicado: (2013) -
A mixed-signal implementation of a polychronous spiking neural network with delay adaptation
por: Wang, Runchun M., et al.
Publicado: (2014) -
A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks
por: Wang, Runchun M., et al.
Publicado: (2015) -
Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels
por: Afshar, Saeed, et al.
Publicado: (2014)