Cargando…
Phase Transition in Long-Range Percolation on Bipartite Hierarchical Lattices
We propose a family of bipartite hierarchical lattice of order N governed by a pair of parameters ℓ and γ. We study long-range percolation on the bipartite hierarchical lattice where any edge (running between vertices of unlike bipartition sets) of length k is present with probability p (k) = 1 − ex...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3830813/ https://www.ncbi.nlm.nih.gov/pubmed/24288461 http://dx.doi.org/10.1155/2013/172393 |
Sumario: | We propose a family of bipartite hierarchical lattice of order N governed by a pair of parameters ℓ and γ. We study long-range percolation on the bipartite hierarchical lattice where any edge (running between vertices of unlike bipartition sets) of length k is present with probability p (k) = 1 − exp(−αβ (−k)), independently of all other edges. The parameter α is the percolation parameter, while β describes the long-range nature of the model. The model exhibits a nontrivial phase transition in the sense that a critical value α (c) ∈ (0, ∞) if and only if ℓ ≥ 1, 1 ≤ γ ≤ N − 1, and β ∈ (N, N (2)). Moreover, the infinite component is unique when α > α (c). |
---|