Cargando…

Postischemic Long-Term Treatment with Qiangli Tianma Duzhong Capsule Improves Brain Functional Recovery via the Improvement of Hemorrheology and the Inhibition of Platelet Aggregation in a Rat Model of Focal Cerebral Ischemia

Qiangli Tianma Duzhong capsule (TMDZ), a Chinese herbal drug, is clinically used to improve functional outcome in patients with ischemic stroke in China. This study was conducted to establish whether postischemic long-term treatment with TMDZ could reduce the loss of injured hemisphere and confer th...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Li-Zhi, Gu, Wei-wei, Ni, Yong, Xu, Min, Yang, Lei, Liu, Yan-Li, Yang, Shi-Ling, Zhou, Qiang, Gao, Xiu-Mei, Zhang, Hui-Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3830819/
https://www.ncbi.nlm.nih.gov/pubmed/24319485
http://dx.doi.org/10.1155/2013/795365
Descripción
Sumario:Qiangli Tianma Duzhong capsule (TMDZ), a Chinese herbal drug, is clinically used to improve functional outcome in patients with ischemic stroke in China. This study was conducted to establish whether postischemic long-term treatment with TMDZ could reduce the loss of injured hemisphere and confer the improvements of neurological outcome in chronic survival of rats with 2 h middle cerebral artery occlusion (MCAO)/reperfusion brain injury and its primary mechanisms. We found that TMDZ (44.5, 89, or 178 mg/kg), administered per os 6 h after the onset of ischemia and for 28 consecutive days, significantly improved the behavior deficits, beginning on day 7, and further improved later. TMDZ treatment also markedly reduced the tissue loss of the injured hemisphere and improved histopathology. In the meantime, TMDZ treatment could improve hemorrheology and inhibit platelet aggregation. These results provide the first evidence that post-ischemic long-term treatment with TMDZ confers the improvements of neurological outcome and the loss of injured hemisphere in an animal ischemic stroke model, and its mechanisms might be associated with the improvements of hemorrheology and the inhibition of platelet aggregation.