Cargando…
Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury
Extracellular factors that inhibit axon growth and intrinsic factors that promote it affect neural regeneration. Therapies targeting any single gene have not yet simultaneously optimized both types of factors. Chondroitin sulphate (CS), a glycosaminoglycan, is the most abundant extracellular inhibit...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831297/ https://www.ncbi.nlm.nih.gov/pubmed/24220492 http://dx.doi.org/10.1038/ncomms3740 |
_version_ | 1782291588088594432 |
---|---|
author | Takeuchi, Kosei Yoshioka, Nozomu Higa Onaga, Susumu Watanabe, Yumi Miyata, Shinji Wada, Yoshino Kudo, Chika Okada, Masayasu Ohko, Kentaro Oda, Kanako Sato, Toshiya Yokoyama, Minesuke Matsushita, Natsuki Nakamura, Masaya Okano, Hideyuki Sakimura, Kenji Kawano, Hitoshi Kitagawa, Hiroshi Igarashi, Michihiro |
author_facet | Takeuchi, Kosei Yoshioka, Nozomu Higa Onaga, Susumu Watanabe, Yumi Miyata, Shinji Wada, Yoshino Kudo, Chika Okada, Masayasu Ohko, Kentaro Oda, Kanako Sato, Toshiya Yokoyama, Minesuke Matsushita, Natsuki Nakamura, Masaya Okano, Hideyuki Sakimura, Kenji Kawano, Hitoshi Kitagawa, Hiroshi Igarashi, Michihiro |
author_sort | Takeuchi, Kosei |
collection | PubMed |
description | Extracellular factors that inhibit axon growth and intrinsic factors that promote it affect neural regeneration. Therapies targeting any single gene have not yet simultaneously optimized both types of factors. Chondroitin sulphate (CS), a glycosaminoglycan, is the most abundant extracellular inhibitor of axon growth. Here we show that mice carrying a gene knockout for CS N-acetylgalactosaminyltransferase-1 (T1), a key enzyme in CS biosynthesis, recover more completely from spinal cord injury than wild-type mice and even chondroitinase ABC-treated mice. Notably, synthesis of heparan sulphate (HS), a glycosaminoglycan promoting axonal growth, is also upregulated in TI knockout mice because HS-synthesis enzymes are induced in the mutant neurons. Moreover, chondroitinase ABC treatment never induces HS upregulation. Taken together, our results indicate that regulation of a single gene, T1, mediates excellent recovery from spinal cord injury by optimizing counteracting effectors of axon regeneration—an extracellular inhibitor of CS and intrinsic promoters, namely, HS-synthesis enzymes. |
format | Online Article Text |
id | pubmed-3831297 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-38312972013-11-18 Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury Takeuchi, Kosei Yoshioka, Nozomu Higa Onaga, Susumu Watanabe, Yumi Miyata, Shinji Wada, Yoshino Kudo, Chika Okada, Masayasu Ohko, Kentaro Oda, Kanako Sato, Toshiya Yokoyama, Minesuke Matsushita, Natsuki Nakamura, Masaya Okano, Hideyuki Sakimura, Kenji Kawano, Hitoshi Kitagawa, Hiroshi Igarashi, Michihiro Nat Commun Article Extracellular factors that inhibit axon growth and intrinsic factors that promote it affect neural regeneration. Therapies targeting any single gene have not yet simultaneously optimized both types of factors. Chondroitin sulphate (CS), a glycosaminoglycan, is the most abundant extracellular inhibitor of axon growth. Here we show that mice carrying a gene knockout for CS N-acetylgalactosaminyltransferase-1 (T1), a key enzyme in CS biosynthesis, recover more completely from spinal cord injury than wild-type mice and even chondroitinase ABC-treated mice. Notably, synthesis of heparan sulphate (HS), a glycosaminoglycan promoting axonal growth, is also upregulated in TI knockout mice because HS-synthesis enzymes are induced in the mutant neurons. Moreover, chondroitinase ABC treatment never induces HS upregulation. Taken together, our results indicate that regulation of a single gene, T1, mediates excellent recovery from spinal cord injury by optimizing counteracting effectors of axon regeneration—an extracellular inhibitor of CS and intrinsic promoters, namely, HS-synthesis enzymes. Nature Pub. Group 2013-11-12 /pmc/articles/PMC3831297/ /pubmed/24220492 http://dx.doi.org/10.1038/ncomms3740 Text en Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/3.0/ This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. To view a copy of this licence visit http://creativecommons.org/licenses/by/3.0/. |
spellingShingle | Article Takeuchi, Kosei Yoshioka, Nozomu Higa Onaga, Susumu Watanabe, Yumi Miyata, Shinji Wada, Yoshino Kudo, Chika Okada, Masayasu Ohko, Kentaro Oda, Kanako Sato, Toshiya Yokoyama, Minesuke Matsushita, Natsuki Nakamura, Masaya Okano, Hideyuki Sakimura, Kenji Kawano, Hitoshi Kitagawa, Hiroshi Igarashi, Michihiro Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury |
title | Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury |
title_full | Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury |
title_fullStr | Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury |
title_full_unstemmed | Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury |
title_short | Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury |
title_sort | chondroitin sulphate n-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831297/ https://www.ncbi.nlm.nih.gov/pubmed/24220492 http://dx.doi.org/10.1038/ncomms3740 |
work_keys_str_mv | AT takeuchikosei chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT yoshiokanozomu chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT higaonagasusumu chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT watanabeyumi chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT miyatashinji chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT wadayoshino chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT kudochika chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT okadamasayasu chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT ohkokentaro chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT odakanako chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT satotoshiya chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT yokoyamaminesuke chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT matsushitanatsuki chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT nakamuramasaya chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT okanohideyuki chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT sakimurakenji chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT kawanohitoshi chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT kitagawahiroshi chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury AT igarashimichihiro chondroitinsulphatenacetylgalactosaminyltransferase1inhibitsrecoveryfromneuralinjury |