Cargando…
Lung progenitors from lambs can differentiate into specialized alveolar or bronchiolar epithelial cells
BACKGROUND: Airways progenitors may be involved in embryogenesis and lung repair. The characterization of these important populations may enable development of new therapeutics to treat acute or chronic lung disease. In this study, we aimed to establish the presence of bronchioloalveolar progenitors...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831758/ https://www.ncbi.nlm.nih.gov/pubmed/24206786 http://dx.doi.org/10.1186/1746-6148-9-224 |
_version_ | 1782291616453623808 |
---|---|
author | Archer, Fabienne Abi-Rizk, Alain Desloire, Sophie Dolmazon, Christine Gineys, Barbara Guiguen, François Cottin, Vincent Mornex, Jean-François Leroux, Caroline |
author_facet | Archer, Fabienne Abi-Rizk, Alain Desloire, Sophie Dolmazon, Christine Gineys, Barbara Guiguen, François Cottin, Vincent Mornex, Jean-François Leroux, Caroline |
author_sort | Archer, Fabienne |
collection | PubMed |
description | BACKGROUND: Airways progenitors may be involved in embryogenesis and lung repair. The characterization of these important populations may enable development of new therapeutics to treat acute or chronic lung disease. In this study, we aimed to establish the presence of bronchioloalveolar progenitors in ovine lungs and to characterize their potential to differentiate into specialized cells. RESULTS: Lung cells were studied using immunohistochemistry on frozen sections of the lung. Immunocytochemistry and flow cytometry were conducted on ex-vivo derived pulmonary cells. The bronchioloalveolar progenitors were identified by their co-expression of CCSP, SP-C and CD34. A minor population of CD34(pos)/SP-C(pos)/CCSP(pos) cells (0.33% ± 0.31) was present ex vivo in cell suspensions from dissociated lungs. Using CD34 magnetic positive-cell sorting, undifferentiated SP-C(pos)/CCSP(pos) cells were purified (>80%) and maintained in culture. Using synthetic media and various extracellular matrices, SP-C(pos)/CCSP(pos) cells differentiated into either club cells (formerly named Clara cells) or alveolar epithelial type-II cells. Furthermore, these ex vivo and in vitro derived bronchioloalveolar progenitors expressed NANOG, OCT4 and BMI1, specifically described in progenitors or stem cells, and during lung development. CONCLUSIONS: We report for the first time in a large animal the existence of bronchioloalveolar progenitors with dual differentiation potential and the expression of specialized genes. These newly described cell population in sheep could be implicated in regeneration of the lung following lesions or in development of diseases such as cancers. |
format | Online Article Text |
id | pubmed-3831758 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38317582013-11-19 Lung progenitors from lambs can differentiate into specialized alveolar or bronchiolar epithelial cells Archer, Fabienne Abi-Rizk, Alain Desloire, Sophie Dolmazon, Christine Gineys, Barbara Guiguen, François Cottin, Vincent Mornex, Jean-François Leroux, Caroline BMC Vet Res Research Article BACKGROUND: Airways progenitors may be involved in embryogenesis and lung repair. The characterization of these important populations may enable development of new therapeutics to treat acute or chronic lung disease. In this study, we aimed to establish the presence of bronchioloalveolar progenitors in ovine lungs and to characterize their potential to differentiate into specialized cells. RESULTS: Lung cells were studied using immunohistochemistry on frozen sections of the lung. Immunocytochemistry and flow cytometry were conducted on ex-vivo derived pulmonary cells. The bronchioloalveolar progenitors were identified by their co-expression of CCSP, SP-C and CD34. A minor population of CD34(pos)/SP-C(pos)/CCSP(pos) cells (0.33% ± 0.31) was present ex vivo in cell suspensions from dissociated lungs. Using CD34 magnetic positive-cell sorting, undifferentiated SP-C(pos)/CCSP(pos) cells were purified (>80%) and maintained in culture. Using synthetic media and various extracellular matrices, SP-C(pos)/CCSP(pos) cells differentiated into either club cells (formerly named Clara cells) or alveolar epithelial type-II cells. Furthermore, these ex vivo and in vitro derived bronchioloalveolar progenitors expressed NANOG, OCT4 and BMI1, specifically described in progenitors or stem cells, and during lung development. CONCLUSIONS: We report for the first time in a large animal the existence of bronchioloalveolar progenitors with dual differentiation potential and the expression of specialized genes. These newly described cell population in sheep could be implicated in regeneration of the lung following lesions or in development of diseases such as cancers. BioMed Central 2013-11-08 /pmc/articles/PMC3831758/ /pubmed/24206786 http://dx.doi.org/10.1186/1746-6148-9-224 Text en Copyright © 2013 Archer et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Archer, Fabienne Abi-Rizk, Alain Desloire, Sophie Dolmazon, Christine Gineys, Barbara Guiguen, François Cottin, Vincent Mornex, Jean-François Leroux, Caroline Lung progenitors from lambs can differentiate into specialized alveolar or bronchiolar epithelial cells |
title | Lung progenitors from lambs can differentiate into specialized alveolar or bronchiolar epithelial cells |
title_full | Lung progenitors from lambs can differentiate into specialized alveolar or bronchiolar epithelial cells |
title_fullStr | Lung progenitors from lambs can differentiate into specialized alveolar or bronchiolar epithelial cells |
title_full_unstemmed | Lung progenitors from lambs can differentiate into specialized alveolar or bronchiolar epithelial cells |
title_short | Lung progenitors from lambs can differentiate into specialized alveolar or bronchiolar epithelial cells |
title_sort | lung progenitors from lambs can differentiate into specialized alveolar or bronchiolar epithelial cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831758/ https://www.ncbi.nlm.nih.gov/pubmed/24206786 http://dx.doi.org/10.1186/1746-6148-9-224 |
work_keys_str_mv | AT archerfabienne lungprogenitorsfromlambscandifferentiateintospecializedalveolarorbronchiolarepithelialcells AT abirizkalain lungprogenitorsfromlambscandifferentiateintospecializedalveolarorbronchiolarepithelialcells AT desloiresophie lungprogenitorsfromlambscandifferentiateintospecializedalveolarorbronchiolarepithelialcells AT dolmazonchristine lungprogenitorsfromlambscandifferentiateintospecializedalveolarorbronchiolarepithelialcells AT gineysbarbara lungprogenitorsfromlambscandifferentiateintospecializedalveolarorbronchiolarepithelialcells AT guiguenfrancois lungprogenitorsfromlambscandifferentiateintospecializedalveolarorbronchiolarepithelialcells AT cottinvincent lungprogenitorsfromlambscandifferentiateintospecializedalveolarorbronchiolarepithelialcells AT mornexjeanfrancois lungprogenitorsfromlambscandifferentiateintospecializedalveolarorbronchiolarepithelialcells AT lerouxcaroline lungprogenitorsfromlambscandifferentiateintospecializedalveolarorbronchiolarepithelialcells |