Cargando…

Novel perspective: exercise training stimulus triggers the expression of the oncoprotein human double minute-2 in human skeletal muscle

High expression levels of human double minute-2 (Hdm2) are often associated with increased risk of cancer. Hdm2 is well established as an oncoprotein exerting various tumorigenic effects. Conversely, the physiological functions of Hdm2 in nontumor cells and healthy tissues remain largely unknown. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Roudier, Emilie, Aiken, Julian, Slopack, Dara, Gouzi, Fares, Mercier, Jacques, Haas, Tara L, Gustafsson, Thomas, Hayot, Maurice, Birot, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831923/
https://www.ncbi.nlm.nih.gov/pubmed/24303114
http://dx.doi.org/10.1002/phy2.28
Descripción
Sumario:High expression levels of human double minute-2 (Hdm2) are often associated with increased risk of cancer. Hdm2 is well established as an oncoprotein exerting various tumorigenic effects. Conversely, the physiological functions of Hdm2 in nontumor cells and healthy tissues remain largely unknown. We previously demonstrated that exercise training stimulates expression of murine double minute-2 (Mdm2), the murine analog of Hdm2, in rodent skeletal muscle and Mdm2 was required for exercise-induced muscle angiogenesis. Here we showed that exercise training stimulated the expression of Hdm2 protein in human skeletal muscle from +38% to +81%. This robust physiological response was observed in 60–70% of the subjects tested, in both young and senior populations. Similarly, exercise training stimulated the expression of platelet endothelial cell adhesion molecule-1, an indicator of the level of muscle capillarization. Interestingly, a concomitant decrease in the tumor suppressor forkhead box O-1 (FoxO1) transcription factor levels did not occur with training although Mdm2/Hdm2 is known to inhibit FoxO1 expression in diseased skeletal muscle. This could suggest that Hdm2 has different targets when stimulated in a physiological context and that exercise training could be considered therapeutically in the context of cancer in combination with anti-Hdm2 drug therapies in order to preserve Hdm2 physiological functions in healthy tissues.