Cargando…

Formulation and Evaluation of Chondroitin Sulphate Tablets of Aceclofenac for Colon Targeted Drug Delivery

The aim of the present study was to develop a single unit, site-specific matrix tablets of aceclofenac allowing targeted drug release in the colon with a microbially degradable polymeric carrier, chondroitin suphate (CS) and to coat the optimized batches with a pH dependent polymeric. The tablets we...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramasamy, Thiruganesh, Subbaih Khandasamy, Umadevi, Shanmugam, Suresh, Ruttala, Himabindhu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832160/
https://www.ncbi.nlm.nih.gov/pubmed/24250470
Descripción
Sumario:The aim of the present study was to develop a single unit, site-specific matrix tablets of aceclofenac allowing targeted drug release in the colon with a microbially degradable polymeric carrier, chondroitin suphate (CS) and to coat the optimized batches with a pH dependent polymeric. The tablets were prepared by wet granulation method using starch mucilage as a binding agent and HPMC K-100 as a swellable polymer. Chondroitin Sulphate and drug and physical mixture were characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The tablets were tested for their in-vitro dissolution characteristics in various simulated gastric fluids for their suitability as a colon-specific drug delivery system and also the tablets were evaluated for physicochemical properties, drug content, water percentage swelling and erosion characteristics. The dissolution data demonstrates that the 10% w/w increase in coating level of the pH dependent polymer (Eudragit L-100 and Eudragit S-100 in a ratio of 1 : 4 prevented the drug release in the simulated gastric fluid (pH 1.2-SGF) and the simulated intestinal fluid (pH 7.4-SIF). The dissolution rate of the tablet is dependent upon the concentration of Chondroitin sulphate in the simulated colonic fluid (SCF). The rapid increase in release of aceclofenac in SCF was revealed as due to the degradation of the Chondroitin sulphate membrane by bacterial enzymes. The studies confirmed that, the designed system could be used potentially as a carrier for colon delivery of aceclofenac by regulating drug release in stomach and the small intestine.