Cargando…

Interactive Drivers of Activity in a Free-Ranging Estuarine Predator

Animal activity patterns evolve as an optimal balance between energy use, energy acquisition, and predation risk, so understanding how animals partition activity relative to extrinsic environmental fluctuations is central to understanding their ecology, biology and physiology. Here we use accelerome...

Descripción completa

Detalles Bibliográficos
Autores principales: Taylor, Matthew D., McPhan, Luke, van der Meulen, Dylan E., Gray, Charles A., Payne, Nicholas L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832432/
https://www.ncbi.nlm.nih.gov/pubmed/24260520
http://dx.doi.org/10.1371/journal.pone.0080962
Descripción
Sumario:Animal activity patterns evolve as an optimal balance between energy use, energy acquisition, and predation risk, so understanding how animals partition activity relative to extrinsic environmental fluctuations is central to understanding their ecology, biology and physiology. Here we use accelerometry to examine the degree to which activity patterns of an estuarine teleost predator are driven by a series of rhythmic and arrhythmic environmental fluctuations. We implanted free-ranging bream Acanthopagrus australis with acoustic transmitters that measured bi-axial acceleration and pressure (depth), and simultaneously monitored a series of environmental variables (photosynthetically active radiation, tidal height, temperature, turbidity, and lunar phase) for a period of approximately four months. Linear modeling showed an interaction between fish activity, light level and tidal height; with activity rates also negatively correlated with fish depth. These patterns highlight the relatively-complex trade-offs that are required to persist in highly variable environments. This study demonstrates how novel acoustic sensor tags can reveal interactive links between environmental cycles and animal behavior.