Cargando…
Information Filtering in Sparse Online Systems: Recommendation via Semi-Local Diffusion
With the rapid growth of the Internet and overwhelming amount of information and choices that people are confronted with, recommender systems have been developed to effectively support users’ decision-making process in the online systems. However, many recommendation algorithms suffer from the data...
Autores principales: | Zeng, Wei, Zeng, An, Shang, Ming-Sheng, Zhang, Yi-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832491/ https://www.ncbi.nlm.nih.gov/pubmed/24260206 http://dx.doi.org/10.1371/journal.pone.0079354 |
Ejemplares similares
-
Information Filtering via Heterogeneous Diffusion in Online Bipartite Networks
por: Zhang, Fu-Guo, et al.
Publicado: (2015) -
Uncovering the information core in recommender systems
por: Zeng, Wei, et al.
Publicado: (2014) -
Extracting the Information Backbone in Online System
por: Zhang, Qian-Ming, et al.
Publicado: (2013) -
Simultaneous Localization and Mapping with Iterative Sparse Extended Information Filter for Autonomous Vehicles
por: He, Bo, et al.
Publicado: (2015) -
Similarity from Multi-Dimensional Scaling: Solving the Accuracy and Diversity Dilemma in Information Filtering
por: Zeng, Wei, et al.
Publicado: (2014)