Cargando…

DNA, Cell Wall and General Oxidative Damage Underlie the Tellurite/Cefotaxime Synergistic Effect in Escherichia coli

The constant emergence of antibiotic multi-resistant pathogens is a concern worldwide. An alternative for bacterial treatment using nM concentrations of tellurite was recently proposed to boost antibiotic-toxicity and a synergistic effect of tellurite/cefotaxime (CTX) was described. In this work, th...

Descripción completa

Detalles Bibliográficos
Autores principales: Molina-Quiroz, Roberto C., Loyola, David E., Muñoz-Villagrán, Claudia M., Quatrini, Raquel, Vásquez, Claudio C., Pérez-Donoso, José M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832599/
https://www.ncbi.nlm.nih.gov/pubmed/24260236
http://dx.doi.org/10.1371/journal.pone.0079499
Descripción
Sumario:The constant emergence of antibiotic multi-resistant pathogens is a concern worldwide. An alternative for bacterial treatment using nM concentrations of tellurite was recently proposed to boost antibiotic-toxicity and a synergistic effect of tellurite/cefotaxime (CTX) was described. In this work, the molecular mechanism underlying this phenomenon is proposed. Global changes of the transcriptional profile of Escherichia coli exposed to tellurite/CTX were determined by DNA microarrays. Induction of a number of stress regulators (as SoxS), genes related to oxidative damage and membrane transporters was observed. Accordingly, increased tellurite adsorption/uptake and oxidative injuries to proteins and DNA were determined in cells exposed to the mixture of toxicants, suggesting that the tellurite-mediated CTX-potentiating effect is dependent, at least in part, on oxidative stress. Thus, the synergistic tellurite-mediated CTX-potentiating effect depends on increased tellurite uptake/adsorption which results in damage to proteins, DNA and probably other macromolecules. Our findings represent a contribution to the current knowledge of bacterial physiology under antibiotic stress and can be of great interest in the development of new antibiotic-potentiating strategies.