Cargando…
Morning Sleep Inertia in Alertness and Performance: Effect of Cognitive Domain and White Light Conditions
The transition from sleep to wakefulness entails a temporary period of reduced alertness and impaired performance known as sleep inertia. The extent to which its severity varies with task and cognitive processes remains unclear. We examined sleep inertia in alertness, attention, working memory and c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832615/ https://www.ncbi.nlm.nih.gov/pubmed/24260280 http://dx.doi.org/10.1371/journal.pone.0079688 |
Sumario: | The transition from sleep to wakefulness entails a temporary period of reduced alertness and impaired performance known as sleep inertia. The extent to which its severity varies with task and cognitive processes remains unclear. We examined sleep inertia in alertness, attention, working memory and cognitive throughput with the Karolinska Sleepiness Scale (KSS), the Psychomotor Vigilance Task (PVT), n-back and add tasks, respectively. The tasks were administered 2 hours before bedtime and at regular intervals for four hours, starting immediately after awakening in the morning, in eleven participants, in a four-way cross-over laboratory design. We also investigated whether exposure to Blue-Enhanced or Bright Blue-Enhanced white light would reduce sleep inertia. Alertness and all cognitive processes were impaired immediately upon awakening (p<0.01). However, alertness and sustained attention were more affected than cognitive throughput and working memory. Moreover, speed was more affected than accuracy of responses. The light conditions had no differential effect on performance except in the 3-back task (p<0.01), where response times (RT) at the end of four hours in the two Blue-Enhanced white light conditions were faster (200 ms) than at wake time. We conclude that the effect of sleep inertia varies with cognitive domain and that it’s spectral/intensity response to light is different from that of sleepiness. That is, just increasing blue-wavelength in light may not be sufficient to reduce sleep inertia. These findings have implications for critical professions like medicine, law-enforcement etc., in which, personnel routinely wake up from night-time sleep to respond to emergency situations. |
---|