Cargando…
Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients
BACKGROUND: Although regulatory T cells (Treg) are highly enriched in human tumours compared with peripheral blood, expression of the immune-checkpoint receptors, immunosuppressive molecules and function of Treg in these two sites remains undefined. METHODS: Tumour-infiltrating lymphocytes and perip...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833228/ https://www.ncbi.nlm.nih.gov/pubmed/24169351 http://dx.doi.org/10.1038/bjc.2013.645 |
Sumario: | BACKGROUND: Although regulatory T cells (Treg) are highly enriched in human tumours compared with peripheral blood, expression of the immune-checkpoint receptors, immunosuppressive molecules and function of Treg in these two sites remains undefined. METHODS: Tumour-infiltrating lymphocytes and peripheral blood lymphocytes were isolated from a cohort of head and neck squamous cell carcinoma (HNSCC) patients. The immunosuppressive phenotypes and function of intratumoral Treg were compared with those of peripheral blood Treg. RESULTS: The frequency of immune-checkpoint receptor-positive cells was higher on intratumoral FOXP3(+)CD25(hi) Treg compared with circulating Treg (CTLA-4, P=0.002; TIM-3, P=0.002 and PD-1, P=0.002). Immunosuppressive effector molecules, LAP and ectonucleotidase CD39 were also upregulated on intratumoral FOXP3(+) Treg (P=0.002 and P=0.004, respectively). CTLA-4 and CD39 were co-expressed on the majority of intratumoral FOXP3(+)CD4(+) Treg, suggesting that these molecules have a key role in regulatory functions of these cells in situ. Notably, intratumoral Treg exhibited more potently immunosuppressive activity than circulating Treg. CONCLUSION: These results indicate that intratumoral Treg are more immunosuppressive than circulating Treg and CTLA-4 and CD39 expressed can be potential target molecules to inhibit suppressive activities of intratumoral Treg in situ. |
---|