Cargando…
Synthesis and Use of [Cd(Detu)(2)(OOCCH(3))(2)]·H(2)O as Single Molecule Precursor for Cds Nanoparticles
Substituted thiourea ligands are of interest because they possess various donor sites for metal ions and their application in separation of metal ions and as antimicrobial agents. The coordination of the sulfur donor atom led to interest in them as precursor for semiconductor nanoparticles. In this...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833402/ https://www.ncbi.nlm.nih.gov/pubmed/24294141 http://dx.doi.org/10.1155/2013/907562 |
Sumario: | Substituted thiourea ligands are of interest because they possess various donor sites for metal ions and their application in separation of metal ions and as antimicrobial agents. The coordination of the sulfur donor atom led to interest in them as precursor for semiconductor nanoparticles. In this study, cadmium(II) complex of diethylthiourea was synthesized and characterized by elemental analysis, FTIR, and X-ray crystallography. Single crystal X-ray structure of the complex showed that the octahedral geometry around the Cd ion consists of two molecules of diethylthiourea acting as monodentate ligands and two chelating acetate ions. The thermal decomposition of the compound showed that it decomposed to give CdS. The compound was thermolysed in hexadecylamine (HDA) to prepare HDA-capped CdS nanoparticles. The absorption spectrum showed blue shifts in its absorption band edges which clearly indicated quantum confinement effect, and the emission spectrum showed characteristic band edge luminescence. The broad diffraction peaks of the XRD pattern showed the materials to be of the nanometric size. |
---|