Cargando…

Does sucrose intake affect antropometric variables, glycemia, lipemia and C-reactive protein in subjects with type 1 diabetes?: a controlled-trial

BACKGROUND: It is unclear if the sugar intake may affect metabolic parameters in individuals with type 1 diabetes. Therefore, the purpose of this study was to evaluate the effects of sucrose intake in glycemic, lipemic, anthropometric variables, as well as in C-reactive protein (CRP) levels in these...

Descripción completa

Detalles Bibliográficos
Autores principales: Souto, Débora Lopes, Zajdenverg, Lenita, Rodacki, Melanie, Rosado, Eliane Lopes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833849/
https://www.ncbi.nlm.nih.gov/pubmed/24499591
http://dx.doi.org/10.1186/1758-5996-5-67
Descripción
Sumario:BACKGROUND: It is unclear if the sugar intake may affect metabolic parameters in individuals with type 1 diabetes. Therefore, the purpose of this study was to evaluate the effects of sucrose intake in glycemic, lipemic, anthropometric variables, as well as in C-reactive protein (CRP) levels in these individuals. METHODS: Thirty-three subjects with type 1 diabetes were evaluated at baseline and 3-months after intervention. Volunteers were randomized into groups: sucrose-free (diet without sucrose) or sucrose-added (foods containing sucrose in composition). Both groups received the same macronutrient composition and used the carbohydrate counting methods. All underwent an interview and anthropometric evaluation. Blood was drawn for glycated haemoglobin, glucose, total cholesterol, HDL, and CRP measurement, and the medical charts were reviewed in all cases. RESULTS: At baseline, anthropometric, clinical and laboratory variables did not differ between groups, except for the triglycerides. Although at baseline triglycerides levels were higher in the sucrose-added group (p = 0.01), they did not differ between groups after the intervention (p = 0.92). After 3-months, CRP was higher in the sucrose-added than in the sucrose-free group (p = 0.04), but no further differences were found between the groups, including the insulin requirements, anthropometric variables, body composition, and glycemic control. Both groups showed sugars intake above the recommendations at baseline and after intervention. CONCLUSIONS: Sucrose intake, along with a disciplined diet, did not affect insulin requirements, anthropometric variables, body composition, lipemic and glycemic control. However, although the sucrose intakes increase CRP levels, the amount of sugar in the diet was not associated with this inflammatory marker.