Cargando…
Antihyperglycemic and Antihyperlipidemic Effects of Fermented Rhynchosia nulubilis in Alloxan-induced Diabetic Rats
Alloxan administration in rats is used as a model for non-insulin dependent diabetes mellitus (NIDDM). NIDDM is a multifactorial disease, characterized by hyperglycemia and lipoprotein abnormalities. In this study, we evaluated the antihyperglycemic and antihyperlipidemic effects of fermented Rhynch...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Toxicology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834441/ https://www.ncbi.nlm.nih.gov/pubmed/24278624 http://dx.doi.org/10.5487/TR.2013.29.1.015 |
Sumario: | Alloxan administration in rats is used as a model for non-insulin dependent diabetes mellitus (NIDDM). NIDDM is a multifactorial disease, characterized by hyperglycemia and lipoprotein abnormalities. In this study, we evaluated the antihyperglycemic and antihyperlipidemic effects of fermented Rhynchosia nulubilis (FRN) through the regulation of glucose uptake in alloxan-induced rats. Fermented R. nulubilis was administered orally for 28 d at 500 mg/kg of body weight. Body weight and food intake were monitored every day. Biochemical parameters were quantified after 4 week. In the diabetic + FRN group, body weight increased significantly and blood glucose concentrations decreased when compared to those of the diabetic group. After 2 hr of administration, the oral glucose tolerance test (OGTT) indicated a significant reduction in the diabetic + FRN group compared to diabetic group. The diabetic + FRN group experienced a significant reduction in total cholesterol, triglycerides, low density lipoprotein, coronary risk factors, and malondialdehyde concentrations, with significantly increased high density lipoprotein compared to those of diabetic group. These results demonstrate that fermented R. nulubilis possesses potent antihyperglycemic and antihyperlipidemic activity in alloxan-induced diabetic rats. |
---|