Cargando…
Identification of Differentially Expressed Genes in Human Mesenchymal Stem Cell-Derived Neurons
Mesenchymal stem cells (MSCs) have greater potential for immediate clinical and toxicological applications, due to their ability to self-renew, proliferate, and differentiate into a variety of cell types. To identify novel candidate genes that were specifically expressed during transdifferentiation...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Toxicology
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834464/ https://www.ncbi.nlm.nih.gov/pubmed/24278501 http://dx.doi.org/10.5487/TR.2010.26.1.015 |
Sumario: | Mesenchymal stem cells (MSCs) have greater potential for immediate clinical and toxicological applications, due to their ability to self-renew, proliferate, and differentiate into a variety of cell types. To identify novel candidate genes that were specifically expressed during transdifferentiation of human MSCs to neuronal cells, we performed a differential expression analysis with random priming approach using annealing control primer-based differential display reverse transcription-polymerase chain reaction approach. We identified genes for acyl-CoA thioesterase, tissue inhibitor of metalloproteinases-1, brain glycogen phosphorylase, ubiquitin C-terminal hydrolase and aldehyde reductase were up-regualted, whereas genes for transgelin and heparan sulfate proteoglycan were down-regulated in MSC-derived neurons. These differentially expressed genes may have potential role in regulation of neurogenesis. This study could be applied to environmental toxicology in the field of testing the toxicity of a chemical or a physical agent. |
---|