Cargando…
Ontology-aware classification of tissue and cell-type signals in gene expression profiles across platforms and technologies
Motivation: Leveraging gene expression data through large-scale integrative analyses for multicellular organisms is challenging because most samples are not fully annotated to their tissue/cell-type of origin. A computational method to classify samples using their entire gene expression profiles is...
Autores principales: | Lee, Young-suk, Krishnan, Arjun, Zhu, Qian, Troyanskaya, Olga G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834796/ https://www.ncbi.nlm.nih.gov/pubmed/24037214 http://dx.doi.org/10.1093/bioinformatics/btt529 |
Ejemplares similares
-
GIANT 2.0: genome-scale integrated analysis of gene networks in tissues
por: Wong, Aaron K, et al.
Publicado: (2018) -
FNTM: a server for predicting functional networks of tissues in mouse
por: Goya, Jonathan, et al.
Publicado: (2015) -
GOLEM: an interactive graph-based gene-ontology navigation and analysis tool
por: Sealfon, Rachel SG, et al.
Publicado: (2006) -
Planarian Anatomy Ontology: a resource to connect data within and across experimental platforms
por: Nowotarski, Stephanie H., et al.
Publicado: (2021) -
Ontology for the Avida digital evolution platform
por: Ortega, Raúl, et al.
Publicado: (2023)