Cargando…
A general approach for discriminative de novo motif discovery from high-throughput data
De novo motif discovery has been an important challenge of bioinformatics for the past two decades. Since the emergence of high-throughput techniques like ChIP-seq, ChIP-exo and protein-binding microarrays (PBMs), the focus of de novo motif discovery has shifted to runtime and accuracy on large data...
Autores principales: | Grau, Jan, Posch, Stefan, Grosse, Ivo, Keilwagen, Jens |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834837/ https://www.ncbi.nlm.nih.gov/pubmed/24057214 http://dx.doi.org/10.1093/nar/gkt831 |
Ejemplares similares
-
Varying levels of complexity in transcription factor binding motifs
por: Keilwagen, Jens, et al.
Publicado: (2015) -
De-Novo Discovery of Differentially Abundant Transcription Factor Binding Sites Including Their Positional Preference
por: Keilwagen, Jens, et al.
Publicado: (2011) -
Correction: De-Novo Discovery of Differentially Abundant Transcription Factor Binding Sites Including Their Positional Preference
por: Keilwagen, Jens, et al.
Publicado: (2011) -
Unifying generative and discriminative learning principles
por: Keilwagen, Jens, et al.
Publicado: (2010) -
Accurate prediction of cell type-specific transcription factor binding
por: Keilwagen, Jens, et al.
Publicado: (2019)