Cargando…
A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors
Spintronics is an emerging paradigm with the aim to replace conventional electronics by using electron spins as information carriers. Its utility relies on the magnitude of the spin-relaxation, which is dominated by spin-orbit coupling (SOC). Yet, SOC induced spin-relaxation in metals and semiconduc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834866/ https://www.ncbi.nlm.nih.gov/pubmed/24252975 http://dx.doi.org/10.1038/srep03233 |
_version_ | 1782292055912873984 |
---|---|
author | Boross, Péter Dóra, Balázs Kiss, Annamária Simon, Ferenc |
author_facet | Boross, Péter Dóra, Balázs Kiss, Annamária Simon, Ferenc |
author_sort | Boross, Péter |
collection | PubMed |
description | Spintronics is an emerging paradigm with the aim to replace conventional electronics by using electron spins as information carriers. Its utility relies on the magnitude of the spin-relaxation, which is dominated by spin-orbit coupling (SOC). Yet, SOC induced spin-relaxation in metals and semiconductors is discussed for the seemingly orthogonal cases when inversion symmetry is retained or broken by the so-called Elliott-Yafet and D'yakonov-Perel' spin-relaxation mechanisms, respectively. We unify the two theories on general grounds for a generic two-band system containing intra- and inter-band SOC. While the previously known limiting cases are recovered, we also identify parameter domains when a crossover occurs between them, i.e. when an inversion symmetry broken state evolves from a D'yakonov-Perel' to an Elliott-Yafet type of spin-relaxation and conversely for a state with inversional symmetry. This provides an ultimate link between the two mechanisms of spin-relaxation. |
format | Online Article Text |
id | pubmed-3834866 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-38348662013-11-23 A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors Boross, Péter Dóra, Balázs Kiss, Annamária Simon, Ferenc Sci Rep Article Spintronics is an emerging paradigm with the aim to replace conventional electronics by using electron spins as information carriers. Its utility relies on the magnitude of the spin-relaxation, which is dominated by spin-orbit coupling (SOC). Yet, SOC induced spin-relaxation in metals and semiconductors is discussed for the seemingly orthogonal cases when inversion symmetry is retained or broken by the so-called Elliott-Yafet and D'yakonov-Perel' spin-relaxation mechanisms, respectively. We unify the two theories on general grounds for a generic two-band system containing intra- and inter-band SOC. While the previously known limiting cases are recovered, we also identify parameter domains when a crossover occurs between them, i.e. when an inversion symmetry broken state evolves from a D'yakonov-Perel' to an Elliott-Yafet type of spin-relaxation and conversely for a state with inversional symmetry. This provides an ultimate link between the two mechanisms of spin-relaxation. Nature Publishing Group 2013-11-20 /pmc/articles/PMC3834866/ /pubmed/24252975 http://dx.doi.org/10.1038/srep03233 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Boross, Péter Dóra, Balázs Kiss, Annamária Simon, Ferenc A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors |
title | A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors |
title_full | A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors |
title_fullStr | A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors |
title_full_unstemmed | A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors |
title_short | A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors |
title_sort | unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834866/ https://www.ncbi.nlm.nih.gov/pubmed/24252975 http://dx.doi.org/10.1038/srep03233 |
work_keys_str_mv | AT borosspeter aunifiedtheoryofspinrelaxationduetospinorbitcouplinginmetalsandsemiconductors AT dorabalazs aunifiedtheoryofspinrelaxationduetospinorbitcouplinginmetalsandsemiconductors AT kissannamaria aunifiedtheoryofspinrelaxationduetospinorbitcouplinginmetalsandsemiconductors AT simonferenc aunifiedtheoryofspinrelaxationduetospinorbitcouplinginmetalsandsemiconductors AT borosspeter unifiedtheoryofspinrelaxationduetospinorbitcouplinginmetalsandsemiconductors AT dorabalazs unifiedtheoryofspinrelaxationduetospinorbitcouplinginmetalsandsemiconductors AT kissannamaria unifiedtheoryofspinrelaxationduetospinorbitcouplinginmetalsandsemiconductors AT simonferenc unifiedtheoryofspinrelaxationduetospinorbitcouplinginmetalsandsemiconductors |