Cargando…

Mechanistic analysis for time-dependent effects of cinacalcet on serum calcium, phosphorus, and parathyroid hormone levels in 5/6 nephrectomized rats

This study investigates the time-dependent effects of cinacalcet on serum calcium, phosphorus, and parathyroid hormone (PTH) levels in 5/6 nephrectomized (NX) rats with experimental chronic renal insufficiency. In this study, 5/6 NX male, Sprague–Dawley rats were treated with vehicle or cinacalcet (...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu-Wong, J Ruth, Nakane, Masaki, Chen, Yung-wu, Mizobuchi, Masahide
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835002/
https://www.ncbi.nlm.nih.gov/pubmed/24303131
http://dx.doi.org/10.1002/phy2.46
Descripción
Sumario:This study investigates the time-dependent effects of cinacalcet on serum calcium, phosphorus, and parathyroid hormone (PTH) levels in 5/6 nephrectomized (NX) rats with experimental chronic renal insufficiency. In this study, 5/6 NX male, Sprague–Dawley rats were treated with vehicle or cinacalcet (10 mg/kg, oral, 1× daily). On Day 0 (before treatment), Day 12 and 13 after treatment (to approximate the clinical practice), and also at 0, 1, 4, 8, 16, and 24 hours after the last dosing, blood was collected for analysis. After 12 or 13 days of cinacalcet treatment, modest changes were observed in serum Ca and phosphorus (Pi), while PTH decreased by >45% to Sham levels (152 ± 15 pg/mL). Detailed mapping found that cinacalcet caused a significant time-dependent decrease in serum Ca following dosing, reaching a lowest point at 8 hours (decrease by 20% to 8.43 ± 0.37 mg/dL), and then returning to normal at 24 hours. Cinacalcet also caused a significant increase in serum Pi levels (by 18%). To investigate the potential mechanism of action, a broad approach was taken by testing cinacalcet in a panel of 77 protein-binding assays. Cinacalcet interacted with several channels, transporters, and neurotransmitter receptors, some of which are involved in brain and heart, and may impact Ca homeostasis. Cinacalcet dose-dependently increased brain natriuretic peptide (BNP) mRNA expression by 48% in cardiomyocytes, but had no significant effects on left ventricular hypertrophy and cardiac function. The results suggest that cinacalcet's hypocalcemic effect may be due to its nonspecific interaction with other receptors in brain and heart.