Cargando…

Astragalus Polysaccharide Suppresses the Expression of Adhesion Molecules through the Regulation of the p38 MAPK Signaling Pathway in Human Cardiac Microvascular Endothelial Cells after Ischemia-Reperfusion Injury

Astragalus polysaccharide is a major component of radix astragali, a vital qi-reinforcing herb medicine with favorable immune-regulating effects. In a previous animal experiment, we demonstrated that astragalus polysaccharide effectively alleviates ischemia-reperfusion injury (IRI) of cardiac muscle...

Descripción completa

Detalles Bibliográficos
Autores principales: Hai-Yan, Zhu, Yong-Hong, Gao, Zhi-Yao, Wang, Bing, Xu, Ai-Ming, Wu, Yan-Wei, Xing, Bei, Liu, Li-Xia, Lou, Li-Xin, Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835432/
https://www.ncbi.nlm.nih.gov/pubmed/24302961
http://dx.doi.org/10.1155/2013/280493
Descripción
Sumario:Astragalus polysaccharide is a major component of radix astragali, a vital qi-reinforcing herb medicine with favorable immune-regulating effects. In a previous animal experiment, we demonstrated that astragalus polysaccharide effectively alleviates ischemia-reperfusion injury (IRI) of cardiac muscle through the regulation of the inflammatory reactions. However, the relationship between this herb and the cohesion molecules on the cell surface remains controversial. In this study, human cardiac microvascular endothelial cells (HCMECs) were used to validate the protective effects of astragalus under an IRI scheme simulated through hypoxia/reoxygenation in vitro. The results indicated that astragalus polysaccharide inhibited the cohesion between HCMECs and polymorphonuclear leukocyte (PMN) during IRI through the downregulation of p38 MAPK signaling and the reduction of cohesive molecule expression in HCMECs.