Cargando…

Reduced Levels of NR1 and NR2A with Depression-Like Behavior in Different Brain Regions in Prenatally Stressed Juvenile Offspring

Adolescence is a time of continued brain maturation, particularly in limbic and cortical regions, which undoubtedly plays a role in the physiological and emotional changes. Juvenile rats repeatedly exposed to prenatal stress (PS) exhibit behavioral features often observed in neuropsychiatric disorde...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Hongli, Guan, Lixia, Zhu, Zhongliang, Li, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835745/
https://www.ncbi.nlm.nih.gov/pubmed/24278457
http://dx.doi.org/10.1371/journal.pone.0081775
Descripción
Sumario:Adolescence is a time of continued brain maturation, particularly in limbic and cortical regions, which undoubtedly plays a role in the physiological and emotional changes. Juvenile rats repeatedly exposed to prenatal stress (PS) exhibit behavioral features often observed in neuropsychiatric disorders including depression. However, to date the underlying neurological mechanisms are still unclear. In the current study, juvenile offspring rats whose mothers were exposed to PS were evaluated for depression-related behaviors in open field and sucrose preference test. NMDA receptor subunits NR1 and NR2A in the hippocampus, frontal cortex and striatum were assayed by western blotting. The results indicated that PS resulted in several behavioral anomalies in the OFT and sucrose preference test. Moreover, reduced levels of NMDA receptor subunits NR1 and NR2A in the hippocampus, and NR1 in prefrontal cortex and striatum of prenatally stressed juvenile offspring were found. Treatment with MK-801 to pregnant dams could prevent all those changes in the juvenile offspring. Collectivity, these data support the argument that PS to pregnant dams could induce depression-like behavior, which may be involved with abnormal expression of NR1 and NR2A in specific brain regions, and MK-801 may have antidepressant-like effects on the juvenile offspring.